E-Book, Englisch, 1226 Seiten, Format (B × H): 1850 mm x 245 mm, Gewicht: 2415 g
E-Book, Englisch, 1226 Seiten, Format (B × H): 1850 mm x 245 mm, Gewicht: 2415 g
ISBN: 978-3-8343-6250-6
Verlag: Vogel Communications Group GmbH & Co. KG
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Prefaces and Table of Contents;9
2;Description of the Most Important Symbols;19
3;1 Introduction;23
4;2 Heat Transfer Fluids;27
4.1;2.1 General;27
4.2;2.2 Organic Heat Transfer Fluids;34
4.3;2.3 Silicone Oil-Based Heat Transfer Fluids;147
4.4;2.4 Glycol-Based Heat Transfer Fluids;159
5;3 Design of Heat Transfer Plants;175
5.1;3.1 Symbols, Flow Sheets and Abbreviations;175
5.2;3.2 Plant Systems;181
5.3;3.3 System Design of Plants with Forced Convection;185
5.4;3.4 System Additions;189
5.5;3.5 Plant Separation System to Atmosphere;190
5.6;3.6 Heat Transfer Fluid in the Collection Vessel;200
5.7;3.7 Parallel Connection of Heaters;203
5.8;3.8 Flow Connecting Possibilities of the Heat Consumer;206
5.9;3.9 Additions and Summary of the Plant Systems;210
5.10;3.10 Selection Criteria for the Plant System;212
5.11;3.11 Plants with Liquid and Vaporous Heat Transfer Fluid;213
5.12;3.12 Plant Data;219
5.13;3.13 System Performance Curve of the Plant;224
5.14;3.14 Safety Equipment;226
5.15;3.15 Design of Salt Melt Installations;237
5.16;3.16 Design of a Liquid Metal Installation;239
6;4 Fundamentals of Flow and Heat;245
6.1;4.1 Flow Rate of Heat Transfer Fluid;245
6.2;4.2 Pressure Losses on the Heat Transfer Fluid Side;249
6.3;4.3 Fundamentals of Heat;267
7;5 Heaters;301
7.1;5.1 Electric Heaters;301
7.2;5.2 Directly Fired Heaters;321
7.3;5.3 Heater Heated by Hot Gases;368
7.4;5.4 Heaters with External Furnaces;375
7.5;5.5 Heater Performance Field;379
7.6;5.6 Example of Calculation of the Highest Film Temperature in the Heater;384
7.7;5.7 Deposits and Stresses in the Heater Tube Wall;404
7.8;5.8 Measures to Prevent Explosions in the Heater;422
8;6 Plant Components;423
8.1;6.1 Heating;423
8.2;6.2 Circulating Pumps;472
8.3;6.3 Valves;554
8.4;6.4 Pipework;598
8.5;6.5 Tanks;622
9;7 Heat Consumers;631
9.1;7.1 Determination of the Heat Requirement;632
9.2;7.2 General Design Rules;635
9.3;7.3 Air Heaters;637
9.4;7.4 Stirrer Vessels, Containers and Tanks;638
9.5;7.5 Heat Exchangers;641
9.6;7.6 Steam Generators;643
9.7;7.7 Hot Tap Water Heaters;647
9.8;7.8 Cylinder Heating;648
9.9;7.9 Press Heating;653
9.10;7.10 Different Options for Heating and Cooling with Storage Tanks;655
9.11;7.11 Heating – Cooling – Chilling (H-C-C);657
9.12;7.12 Pressure Rise Through the Influence of Heat on a Captive Liquid;660
9.13;7.13 Heat Consumers by Fields of Application;661
10;8 Measuring, Control and Circuit Technology;665
10.1;8.1 Measuring Technology;665
10.2;8.2 Control Technology;685
10.3;8.3 Limitation Technology;695
10.4;8.4 Circuit Technology;696
11;9 Installation Specifications;725
11.1;9.1 Installation of the Heaters;725
11.2;9.2 Heater Room Specifications;725
11.3;9.3 Stacks;729
12;10 Operation of Heat Transfer Plants;735
12.1;10.1 Acceptance Test;735
12.2;10.2 Cleaning;735
12.3;10.3 Leak Test;735
12.4;10.4 Filling of the Plant with Heat Transfer Fluid and Pressure Test;736
12.5;10.5 Function Test;737
12.6;10.6 Commissioning;738
12.7;10.7 Record of Measurements;739
12.8;10.8 Shutting-Down;740
12.9;10.9 Maintenance;740
12.10;10.10 Repairs;744
12.11;10.11 Systems for Increasing Operating Safety and InstallationAvailability;745
13;11 Statutes, Ordinances, Regulations, Standards and Specifications of the EU and DIN;767
14;12 Biomass CHP Plants with Organic Fluids(ORC Installations);773
14.1;12.1 Energy from Wood Combustion;775
14.2;12.2 Intermediate Circuit Heat Transfer Fluid System;793
14.3;12.3 Turbine Circuit with Silicone Oil as the Fluid;831
14.4;12.4 Requirements for Heat Transfer Fluid Oil Installationswith Wood Firing Systems for ORC Power Generation;838
15;13 Equations, Diagrams and Tables for Project Planning for Heat Transfer Fluid Installationsin the Liquid Phase;847
15.1;13.1 Volume Flow V;848
15.2;13.2 Pipework Inner Diameter;849
15.3;13.3 Contents I;851
15.4;13.4 Expansion Volume;854
15.5;13.5 Expansion Line dExp and Vent Line dVent;856
15.6;13.6 Pressure Loss Calculation;857
15.7;13.7 Pump and Pump Motor Power Requirement PP and PM;860
15.8;13.8 Ratio of Thermal Power to Pump Power Q/PP;863
15.9;13.9 Measurement Orifice and Throttle Orifice dBL and dDr;864
15.10;13.10 Heat Transfer and Fluid Vapor Data;866
15.11;13.11 Flame-, Combustion Chamber- and Heater Dimensions;867
15.12;13.12 Technical Combustion Efficiency of a Heater ?F;870
15.13;13.13 Fuel Flow and Exhaust Gas Flow B and VA;872
15.14;13.14 Fan Power P;874
15.15;13.15 Stack Diameter for Liquid and Gaseous Fuels dS;875
15.16;13.16 Pipe Routing;875
15.17;13.17 Structural Calculations [13.5];877
16;14 Overview Diagrams of Assemblies: Form Sheets with Sample Calculations;881
16.1;14.1 Form Sheets;881
16.2;14.2 Form Sheets with Sample Calculations;903
17;15 Properties of Organic Heat Transfer Fluids;921
17.1;1. Mineral Oil-Based Organic FluidsApplication Area: Approx. 50…250 °C;929
17.2;2. Synthesis-Based Organic FluidsApplication Area: Approx. 50… max. 400 °C;962
17.3;3. Organic Fluids for Heating-Cooling-Chilling ProcessesApplication Area: Approx. 50…300 °C;1017
17.4;4. Organic Fluids for the Food IndustryApplication Area: Approx. 100…300 °C;1039
17.5;5. Heat Transfer Fluids Based on Polyalkyleneglycol DerivativesApplication Area: Approx. 100…250 °C;1044
17.6;6. Organic Fluids for the Cleaning and Rinsing of Heat Transfer Installations;1047
18;16 Units and Conversion Tables;1049
19;17 Comparison of German and Foreign Rules andStandards;1071
19.1;17.1 Pipeline Components and Materials;1071
20;Sponsored Content;1109
20.1;Parabolic Trough Solar Power Plants – The Largest Thermal Oil Plants in the World;1111
20.2;Explosion Protection in Heat Transfer Systems with Organic Heat Transfer Fluids;1120
20.3;Increased Operational Safety and Plant Availability of aThermal Oil System;1125
20.4;New Technology for Heat Transfer Fluid Installations;1143
20.5;Increased Flexibility and Operational Reliability by Means of Remote Diagnostics;1155
20.6;Handling ?100 °C with a New Chiller System Safely andEconomically;1159
20.7;A 48-MW-Thermal Oil System for Crude Oil Extractionin China;1164
20.8;Tempering at Low Temperatures;1166
20.9;Carrying out Isothermal Processes up to 400 °C;1171
20.10;Sensory Combustion Optimisation of Gas Combustion Systems;1175
20.11;Don’t Ignore Thermal Stability;1185
20.12;Thermal Oil – A Standard with Unknown Depth;1193
20.13;“Proactive condition monitoring and maintenance ofyour heat transfer fluid is of equal importance tochoosing the correct fluid for your application.“;1197