Vintis | Klassifikationsverfahren zur Risikobewertung von Jahresabschlüssen | Buch | 978-3-339-12680-1 | sack.de

Buch, Deutsch, 314 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 410 g

Reihe: Schriftenreihe QM

Vintis

Klassifikationsverfahren zur Risikobewertung von Jahresabschlüssen

Eine empirische Analyse fehlerhafter Jahresabschlüsse deutscher Unternehmen
1. Auflage 2022
ISBN: 978-3-339-12680-1
Verlag: Verlag Dr. Kovac

Eine empirische Analyse fehlerhafter Jahresabschlüsse deutscher Unternehmen

Buch, Deutsch, 314 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 410 g

Reihe: Schriftenreihe QM

ISBN: 978-3-339-12680-1
Verlag: Verlag Dr. Kovac


Informationen des Jahresabschlusses dienen für eine Vielzahl externer Adressaten als wesentliche Informationsquelle zur Entscheidungsfindung. Trotz zahlreicher Kontrollinstanzen kommt es regelmäßig zu Bilanzskandalen, durch die die derzeitigen Kontrollmechanismen auf den Prüfstand gestellt werden. Gleichzeitig sehen sich Prüfer im Zuge der Digitalisierung mit komplexeren Unternehmenssystemen und -daten konfrontiert, wodurch effizientere Prüfungen zwingend notwendig werden. Die Frage, ob ein Jahresabschluss manipuliert worden ist oder nicht, kann statistisch als Klassifikationsproblem verstanden werden. Klassifikationsverfahren des maschinellen Lernens sind in der Lage, adäquate Risikobeurteilungen zu fällen, auf deren Basis eine mögliche Fallauswahl zu prüfender Abschlüsse getroffen werden kann und die eine Festlegung des Prüfungsumfangs in Abwägung des Risikos ermöglicht. Im Rahmen dieser Untersuchung werden verschiedene Methoden des maschinellen Lernens sowie die Kombination dieser Verfahren durch Ensemble-Methoden dargestellt und deren Güte empirisch aus Basis der area under the curve (AUC) von receiver operating characteristic-Kurven (ROC-Kurven) überprüft. Als Datengrundlage dienen Abschlüsse deutscher Unternehmen, bei denen ein nicht uneingeschränkter Bestätigungsvermerk vorgelegen hat oder eine Fehlerfeststellung des Enforcement bekannt gemacht worden ist. Die Gruppe nicht-fehlerhafte Abschlüsse wurde über ein k-nearest-neighbor basiertes Matchingverfahren identifiziert. Die Ergebnisse zeigen, dass insbesondere durch die Verwendung von Ensemble-Methoden eine hohe Klassifikationsgüte erzielt werden kann. Die praktischen Einsatzmöglichkeiten der Verfahren werden am Fall der Wirecard AG dargestellt. Unter Berücksichtigung weiterer Kriterien wie Einfachheit, Verständlichkeit und Implementierbarkeit werden die Einsatzmöglichkeiten im derzeitigen Kontrollsystem von Jahresabschlüssen diskutiert.

Vintis Klassifikationsverfahren zur Risikobewertung von Jahresabschlüssen jetzt bestellen!

Autoren/Hrsg.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.