Vasant / Weber / Zelinka | Intelligent Computing & Optimization | Buch | 978-3-030-93246-6 | sack.de

Buch, Englisch, Band 371, 1006 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1527 g

Reihe: Lecture Notes in Networks and Systems

Vasant / Weber / Zelinka

Intelligent Computing & Optimization

Proceedings of the 4th International Conference on Intelligent Computing and Optimization 2021 (ICO2021)

Buch, Englisch, Band 371, 1006 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1527 g

Reihe: Lecture Notes in Networks and Systems

ISBN: 978-3-030-93246-6
Verlag: Springer International Publishing


This book includes the scientific results of the fourth edition of the International Conference on Intelligent Computing and Optimization which took place at December 30–31, 2021, via ZOOM. The conference objective was to celebrate “Compassion and Wisdom” with researchers, scholars, experts and investigators in Intelligent Computing and Optimization worldwide, to share knowledge, experience, innovation—marvelous opportunity for discourse and mutuality by novel research, invention and creativity.
This proceedings encloses the original and innovative scientific fields of optimization and optimal control, renewable energy and sustainability, artificial intelligence and operational research, economics and management, smart cities and rural planning, meta-heuristics and big data analytics, cyber security and blockchains, IoTs and Industry 4.0, mathematical modelling and simulation, health care and medicine.
Vasant / Weber / Zelinka Intelligent Computing & Optimization jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Low-Light Image Enhancement with Artificial Bee Colony Method.- Optimal State-Feedback Controller Design for Tractor Active Suspension System via Lévy-Flight Intensified Current Search Algorithm.- The Artificial Intelligence Platform with the Use of DNN to Detect Flames: A Case of Acoustic Extinguisher.- Adaptive harmony search for cost optimization of reinforced concrete columns.- Best Traffic Signs Recognition Based on CNN Model for Self-Driving Cars.- Optimisation and Prediction of Glucose Production from Oil Palm trunk via Simultaneous Enzymatic Hydrolysis.- Synthetic data augmentation of cycling sport training datasets.- Optimal Compensation of Bouc-Wen model hysteresis using square dither.- Hybrid Pooling Based Convolutional Neural Network for Multi-class Classification of MR Brain Tumor Images.- Importance of Fuzzy Logic in Traffic and Transportation Engineering.- A Fuzzy Based Clustering Approach to Prolong the Network Lifetime in WSNs.- Visual Expression Analysis from Face Images Using Morphological Processing.- Detection of invertebrate virus carriers using deep learning networks to prevent emerging pandemic-prone disease in tropical regions.- Classification and detection of Plant Leaf Diseases using various Deep Learning techniques and Convolutional Neural Network.- Distributed Self-triggered Optimization for Multi-agent Systems.- Automatic Categorization of News Articles and Headlines using Multi-layer Perceptron.- Using Machine Learning Techniques for Estimating the Electrical Power of a New-Style of Savonius Rotor: A Comparative Study.- Tree-like Branching Network for Multi-class Classification.- Multi-Resolution Dense Residual Networks with High- Modularization for Monocular Depth Estimation.- A Decentralized Federated Learning paradigm for Semantic Segmentation of Geospatial Data.- Development of Contact Angle Prediction for Cellulosic Membrane.- Feature Engineering Based Credit Card Fraud Detection for Risk Minimization in E-Commerce.- DCNN-LSTM Based Audio Classification Combining Multiple Feature Engineering and Data Augmentation Techniques.- Sentiment Analysis: Developing an Efficient Model Based on Machine Learning and Deep Learning Approaches.- Improved Face Detection System.- Paddy Price Prediction in the South-Western Region of Bangladesh.- Paddy Disease Prediction Using Convolutional Neural Network.- Android Malware Detection System: A Machine Learning and Deep Learning based Multilayered Approach.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.