E-Book, Englisch, 1557 Seiten, eBook, Format (B × H): 193 mm x 242 mm
E-Book, Englisch, 1557 Seiten, eBook, Format (B × H): 193 mm x 242 mm
Reihe: Springer Handbook of Experimental Fluid Mechanics
ISBN: 978-3-540-30299-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction
The expression: "analytical work", often connotes an effort in which basic expressions are combined to analyze a given problem and to derive new information and insight from the resulting mathematical steps of the analysis. Specifically, having started with the appropriate relationships and bringing appropriate mathematical manipulations to the task, the analyst is able to create new information to address the motivating question(s).
A central organizing theme of this handbook is that ‘experimental fluid mechanics" can be understood as a parallel activity to that described above. The motivating questions will set the context for the experiment. The experiment will be established as a boundary value problem in which the experimentalist will address all aspects of the boundary conditions that will influence the "solution." If a transient or an evolving solution is sought, the appropriate initial conditions will similarly be addressed.
Having established these conditions, the solution to the boundary value problem will be revealed in the experimental data that will – ideally – not be contaminated by unintended or unknown perturbing effects and that will be fully converged if statistical average values are sought.
Part A Experiments in Fluid Mechanics
The objective of Part A is to establish the fundamental concepts and equations that undergird experimental fluid mechanics. The first chapter: addresses both the governing equations and the constitutive equations for Newtonian and non-Newtonian fluids. Chapter 2 provides the systematic bases for model testing and the scaling of experimental results. Sections 2.1 through 2.7 derive similitude parameters (Reynolds number, Froude number, etc.) from the governing equations and the boundary conditions. Dimensional analysis (Sect. 2.2) provides a rational approach for the organization and interpretation of experimental data; Sect. 2.3, self-similarity, documents known flow fields that exhibit this condition and it provides guidance on what other flows may exhibit this behavior. The encyclopedic presentation of examples will allow the reader to comprehend the universal features of both complete and incomplete self-similarity.
Chap. 1 The Experiment as a Boundary-Value Problem
Chap. 2 Nondimensional Representation of the Boundary-Value Problem
Part B Measurement of Primary Quantities
The objective of Part B is to provide specific information to the reader on the following primary quantities: material properties (Chap. 3), flow field properties (Chap. 4 – pressure, Chap. 5 – velocity, vorticity, Mach number, Chap. 6 – spatial density variations and Chap. 7 – temperature and heat flux) and forces and moments (Chap. 8). Chapter 3 is focused on providing quantitative information for the material properties, the sources of this information and the associated confidence levels for the given data. Chapters 4 through 8 provide comprehensive guidance to the reader on: i) the objectives, ii) the available equipment, iii) the utilization techniques, and iv) the post-processing of the primitive information for the stated quantities.
Chap. 3 Material Properties: Measurement and Data
Chap. 4 Pressure Measurement Systems
Chap. 5 Velocity, Vorticity and Mach Number
Chap. 6 Spatial Density Variations
Chap. 7 Temperature, Concentration and Heat Flux
Chap. 8 Forces and Moments
Part C Specific Experimental Approaches
Building on the previous two parts of this Springer Handbook, which have dealt with the fundamental concepts and equations that undergrid experimental fluid mechanics and the measurement of primary quantities, respectively, Part C addresses experimental fluid mechanics from an application point of view. According to application, often unique and specific forms of equipment, experimental procedure, or analysis and interpretation of results have been developed. It is the purpose of Part C to elucidate a selection of such application areas, in particular measurements of non-Newtonian flows, turbulence, flow visualization, wall-bounded flows, surface topology, turbomachines, hydraulics, aerodynamics, atmospheric and oceanographic measurements, combustion diagnostics and electrohydrodynamic systems.
Chap. 9 Non-Newtonian Flows
Chap. 10 Measurement of Turbulent Flows
Chap. 11 Flow Visualization
Chap. 12 Wall-Bounded Flows
Chap. 13 Surface Topology
Chap. 14 Turbomachines
Chap. 15 Hydraulics
Chap. 16 Aerodynamics
Chap. 17 Atmospheric Measurements
Chap. 18 Oceanographic Measurements
Chap. 19 The No-Slip Boundary Condition
Chap. 20 Combustion Diagnostics
Chap. 21 Electrohydrodynamic Systems
Part D Analyses and Post-Processing of Data
This final part of the Springer Handbook is actually meant to be a reference source about single and data processing techniques commonly encountered in fluid mechanics. These topics have been complemented by a section discussing data acquisition by imaging detectors, a topic becoming increasingly important for optical measurement techniques. These are all subjects, which in their development are not naturally associated with fluid mechanics; hence Part D attempts to collect information from many diverse sources and present them conveniently to the fluid mechanic researcher. Topics covered in this part include fundamental topics of signal and data processing transforms (Fourier, Hilbert, wavelet), proper orthogonal decomposition and stochastic estimation. This is followed by a discussion of estimator expectation and variance and the influence of noise on these quantities. The Cramèr-Rao Lower Bound (CRLB) is introduced and developed for several common signal processing examples from fluid mechanics. Imaging detectors and measures of their performance are then discussed in detail before closing with a chapter on image processing and motion analysis, two topics especially relevant for the Particle Image Velocity (PIV) measurement technique.
Chap. 22 Review of Some Fundamentals
Chap. 23 Fundamentals of Data Processing
Chap. 24 Data Acquisition
Chap. 25 Data Analyses
About the Authors
Subject Index