Tovena / Abate | Geometria Differenziale | Buch | 978-88-470-1919-5 | sack.de

Buch, Italienisch, 472 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 733 g

Reihe: UNITEXT / La Matematica per il 3+2

Tovena / Abate

Geometria Differenziale


2011
ISBN: 978-88-470-1919-5
Verlag: Springer Milan

Buch, Italienisch, 472 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 733 g

Reihe: UNITEXT / La Matematica per il 3+2

ISBN: 978-88-470-1919-5
Verlag: Springer Milan


L'opera fornisce una introduzione alla geometria delle varietà differenziabili, illustrandone le principali proprietà e descrivendo le principali tecniche e i più importanti strumenti usati per il loro studio. Uno degli obiettivi primari dell'opera è di fungere da testo di riferimento per chi (matematici, fisici, ingegneri) usa la geometria differenziale come strumento; inoltre può essere usato come libro di testo per diversi corsi introduttivi alla geometria differenziale, concentrandosi su alcuni dei vari aspetti della teoria presentati nell'opera. Più in dettaglio, nell'opera saranno trattati i seguenti argomenti: richiami di algebra multilineare e tensoriale, spesso non presentati nei corsi standard di algebra lineare; varietà differenziali, incluso il teorema di Whitney; fibrati vettoriali, incluso il teorema di Frobenius e un'introduzione ai fibrati principali; gruppi di Lie, incluso il teorema di corrispondenza fra sottogruppi e sottoalgebre; coomologia di de Rham, inclusa la dualità di Poincaré e il teorema di de Rham; connessioni, inclusa la teoria delle geodetiche; e geometria Riemanniana, con particolare attenzione agli operatori di curvatura e inclusi teoremi di Cartan-Hadamard, Bonnet-Myers, e Synge-Weinstein. Come abitudine degli autori, il testo è scritto in modo da favorire una lettura attiva, cruciale per un buon apprendimento di argomenti matematici; inoltre è corredato da numerosi esempi svolti ed esercizi proposti.

Tovena / Abate Geometria Differenziale jetzt bestellen!

Zielgruppe


Lower undergraduate

Weitere Infos & Material


L'opera fornisce una introduzione alla geometria delle varietà differenziabili, illustrandone le principali proprietà e descrivendo le principali tecniche e i più importanti strumenti usati per il loro studio. Uno degli obiettivi primari dell'opera è di fungere da testo di riferimento per chi (matematici, fisici, ingegneri) usa la geometria differenziale come strumento; inoltre, grazie alla varietà degli  aspetti della teoria in essa presentati, l'opera si presta ad essere utilizzata come libro di testo per corsi introduttivi alla geometria differenziale. Più in dettaglio, nell'opera saranno trattati i seguenti argomenti: richiami di algebra multilineare e tensoriale, spesso non presentati nei corsi standard di algebra lineare; varietà differenziali, incluso il teorema di Whitney; fibrati vettoriali, incluso il teorema di Frobenius; gruppi di Lie, incluso il teorema di corrispondenza fra sottogruppi e sottoalgebre; coomologia di de Rham, inclusa la dualità di Poincaré e il teorema di de Rham; connessioni, inclusa la teoria delle geodetiche; e geometria Riemanniana, con particolare attenzione agli operatori di curvatura e inclusi teoremi di Cartan- Hadamard, Bonnet-Myers, e Synge-Weinstein. Come abitudine degli autori, il testo è scritto in modo da favorire una lettura attiva, cruciale per un buon apprendimento di argomenti matematici; inoltre è corredato da diversi esempi svolti e numerosi esercizi proposti.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.