E-Book, Englisch, 404 Seiten, eBook
Thomsen Vibrations and Stability
2. Auflage 2003
ISBN: 978-3-662-10793-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Advanced Theory, Analysis, and Tools
E-Book, Englisch, 404 Seiten, eBook
ISBN: 978-3-662-10793-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
'Vibrations and Stability' is aimed at third to fifth-year undergraduates and post graduates in mechanical or structural engineering. The book covers a range of subjects relevant for a one-or two-semester course in advanced vibrations and stability. Also, it can be used for self-study, e. g. , by students on master or PhD projects, researchers, and professional engineers. The focus is on nonlinear phe nomena and tools, covering the themes of local perturbation analysis (Chaps. 3 and 4), bifurcation analysis (Chap. 5), global analysis I chaos theory (Chap. 6), and special high-frequency effects (Chap. 7). The ground for nonlinear analysis is laid with a brief summary of elementary linear vibration theory (Chap. 1), and a treatment of differential eigenvalue problems in some depth (Chap. 2). Also, there are exercise problems and extensive bibliographic references to serve the needs of both students and more experienced users; major exercises for course-work; and appendices on numerical simulation, standard mathematical formulas, vibration properties of basic structural elements, and properties of engineering materials. This Second Edition is a revised and expanded version of the first edition (pub lished by McGraw-Hill in 1997), reflecting the experience gathered during its now six years in service as a classroom or self-study text for students and researchers. The second edition contains a major new chapter (7), three new appendices, many new exercise problems, more than 120 new and updated bibliographic references, and hundreds of minor updates, corrections, and clarifications.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
1 Vibration Basics.- 2 Eigenvalue Problems of Vibrations And Stability.- 3 Nonlinear Vibrations: Classical Local Theory.- 4 Nonlinear Multiple-DOF Systems: Local Analysis.- 5 Bifurcations.- 6 Chaotic Vibrations.- 7 Special Effects of High-Frequency Excitation.- Appendix A — Performing Numerical Simulations.- A.1 Solving Differential Equations.- A.2 Computing Chaos-Related Quantities.- A.3 Interfacing with the ODE-Solver.- A.4 Locating Software on the Internet.- Appendix B — Major Exercises.- B.1 Tension Control of Rotating Shafts.- B.1.1 Mathematical Model.- B.1.2 Eigenvalue Problem, Natural Frequencies and Mode Shapes.- B.1.3 Discretisations, Choice of Control Law.- B.1.5 Quantitative Analysis of the Controlled System.- B.1.6 Using a Dither Signal for Open-Loop Control.- B.1.7 Numerical Analysis of the Controlled System.- B.1.8 Conclusions.- B.2 Vibrations of a Spring-Tensioned Beam.- B.2.1 Mathematical Model.- B.2.2 Eigenvalue Problem, Natural Frequencies and Mode Shapes.- B.2.3 Discrete Models.- B.2.4 Local Bifurcation Analysis for the Unloaded System.- B.2.5 Quantitative Analysis of the Loaded System.- B.2.6 Numerical Analysis.- B.2.7 Conclusions.- B.3 Dynamics of a Microbeam.- B.3.1 System Description.- B.3.2 Mathematical Model.- B.3.3 Eigenvalue Problem, Natural Frequencies and Mode Shapes.- B.3.4 Discrete Models, Mode Shape Expansion.- B.3.5 Local Bifurcation Analysis for the Statically Loaded System.- B.3.6 Quantitative Analysis of the Loaded System.- B.3.7 Numerical Analysis.- B.3.8 Conclusions.- Appendix C — Mathematical Formulas.- C.1 Formulas Typically Used in Perturbation analysis.- C.1.1 Complex Numbers.- C.1.2 Powers of Two-Term Sums.- C.1.3 Dirac’s Delta Function (?).- C.1.4 Averaging Integrals.- C.1.5 Fourier Series of a Periodic Function.- C.2Formulas for Stability Analysis.- C.2.1 The Routh-Hurwitz Criterion.- C.2.2 Mathieu’s Equation:Stability of the Zero-Solution.- Appendix D — Vibration Modes and Frequencies for Structural Elements.- D.1 Rods.- D.1.1 Longitudinal Vibrations.- D.1.2 Torsional Vibrations.- D.2 Beams.- D.2.1 Bernoulli-Euler Theory.- D.2.2 Timoshenko Theory.- D.3 Rings.- D.3.1 In-Plane Bending.- D.3.2 Out-of-Plane Bending.- D.3.3 Extension.- D.4 Membranes.- D.4.1 Rectangular Membrane.- D.4.2 Circular Membrane.- D.5 Plates.- D.5.1 Rectangular Plate.- D.5.2 Circular Plate.- D.6 Other Structures.- Appendix E — Properties of Engineering Materials.- E.1 Friction and Thermal Expansion Coefficients.- E.2 Density and Elasticity Constants.- References.