E-Book, Englisch, 858 Seiten, Web PDF
Ter Haar Collected Papers of L.D. Landau
1. Auflage 2013
ISBN: 978-1-4831-5270-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 858 Seiten, Web PDF
ISBN: 978-1-4831-5270-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Collected Papers of L. D. Landau brings together the collected papers of L. D. Landau in the field of physics. The discussion is divided into the following sections: low-temperature physics (including superconductivity); solid-state physics; plasma physics; hydrodynamics; astrophysics; nuclear physics and cosmic rays; quantum mechanics; quantum field theory; and miscellaneous works. Topics covered include the intermediate state of supraconductors; the absorption of sound in solids; the properties of metals at very low temperatures; and production of showers by heavy particles. This volume is comprised of 100 chapters and begins with Landau's paper on the theory of the spectra of diatomic molecules, followed by his studies on the damping problem in wave mechanics; quantum electrodynamics in configuration space; electron motion in crystal lattices; and the internal temperature of stars. Some of Landau's theories, such as those of stars, energy transfer on collisions, phase transitions, and specific heat anomalies are discussed. Subsequent chapters focus on the structure of the undisplaced scattering line; the transport equation in the case of Coulomb interactions; scattering of light by light; and the origin of stellar energy. This book will be a valuable resource for physicists as well as physics students and researchers.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Collected Papers of L. D. Landau;6
3;Copyright Page;7
4;Table of Contents;8
5;PREFACE;14
6;INTRODUCTION;16
7;CHAPTER 1. ON THE THEORY OF THE SPECTRA OF DIATOMIC MOLECULES;24
7.1;REFERENCE;30
8;CHAPTER 2. THE DAMPING PROBLEMIN WAVE MECHANICS;31
8.1;1. COUPLED SYSTEMS IN WAVE MECHANICS;31
8.2;2. CAVITY RADIATION IN WAVE MECHANICS;32
8.3;3. DAMPING IN ATOMIC STRUCTURES;33
8.4;4. SOME PARTICULAR APPLICATIONS;38
8.5;REFERENCES;41
9;CHAPTER 3. QUANTUM ELECTRODYNAMICS IN CONFIGURATION SPACE;42
9.1;1. INTRODUCTION;42
9.2;2. THE WAVE E QUATION FOR A LIGHT QUANTUM;42
9.3;3. SEVEEAL PARTICLES WITHOUT INTERACTION;44
9.4;4. INTERACTION;46
9.5;5. THE RELATION TO THE HEISENBERG–PAULI THEORY;49
9.6;6. MOMENTUM AND FIELD OPERATORS;52
9.7;REFERENCES;53
10;CHAPTER 4. DIAMAGNETISM OF METALS;54
10.1;REFERENCES;61
11;CHAPTER 5. NOTE ON THE SCATTERING OF HARD GAMMA-RAYS;62
12;CHAPTER 6. EXTENSION OF THE UNCERTAINTY PRINCIPLE TO RELATIVISTIC QUANTUM THEORY;63
12.1;1. INTRODUCTION;63
12.2;2#. THE CONCEPT OF MEASUREMENT IN WAVE MECHANICS;63
12.3;3. MOMENTUM MEASUREMENT IN THE RELATIVISTIC CASE;66
12.4;4. FIELD MEASUREMENT;68
12.5;5. MEASUREMENTS ON LIGHT QUANTA;69
12.6;6. MEASUREMENTS ON MATERIAL PARTICLES;70
12.7;7.MATHEMATICAL FAILURE OF THE METHODS OF WAVE MECHANICS;71
12.8;8. CONCLUSIONS;72
12.9;REFERENCES;74
13;CHAPTER 7. A THEORY OF ENERGY TRANSFERON COLLISIONS;75
13.1;REFERENCES;82
14;CHAPTER 8. ON THE THEORY OF STARS;83
14.1;REFERENCE;85
15;CHAPTER 9. A THEORY OF ENERGY TRANSFER. II;86
15.1;REFERENCE;89
16;CHAPTER 10. ELECTRON MOTION IN CRYSTAL LATTICES;90
16.1;REFERENCE;91
17;CHAPTER 11. ON THE SECOND LAW OF THERMODYNAMICS AND THE UNIVERSE;92
18;CHAPTER 12. A POSSIBLE EXPLANATION OF THE FIELD DEPENDENCE OF THE SUSCEPTIBILITY AT LOW TEMPERATURES;96
19;CHAPTER 13. INTERNAL TEMPERATURE OF STARS;100
19.1;REFERENCE;101
20;CHAPTER 14. STRUCTURE OF THE UNDISPLACED SCATTERING LINE;102
20.1;REFERENCE;102
21;CHAPTER 15. ON THE THEORY OF THE SLOWING DOWN OF FAST ELECTRONS BY RADIATION;103
21.1;REFERENCES;106
22;CHAPTER 16. ON THE PRODUCTION OF ELECTRONS AND POSITRONS BY A COLLISION OF TWO PARTICLES;107
22.1;REFERENCES;118
23;CHAPTER 17. ON THE THEORY OF SPECIFIC HEAT ANOMALIES;119
24;CHAPTER 18. ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITYIN FERROMAGNETIC BODIES;124
24.1;REFERENCES;137
25;CHAPTER 19. ON THE RELATIVISTIC CORRECTION OF THE SCHRÖDINGER EQUATION FOR THE MANY-BODY PROBLEM;138
25.1;REFERENCES;139
26;CHAPTER 20. ON THE THEORY OF THE ACCOMMODATION COEFFICIENT;140
26.1;REFERENCES;148
27;CHAPTER 21. ON THE THEORY OF THE PHOTOELECTROMOTIVE FORCE IN SEMICONDUCTORS;149
27.1;1. INTRODUCTION;149
27.2;2. THE DISTRIBUTION FUNCTION;150
27.3;3. THE CONTACT POTENTIAL DIFFERENCE;159
27.4;4. THE PHOTOELECTROMOTIVE FORCE;163
27.5;5. THE PHOTOELECTROMOTIVE FORCE IN A SEMICONDUCTOR WITH CONDUCTING "HOLES";166
27.6;REFERENCES;169
28;CHAPTER 22. ON THE THEORY OF SOUND DISPERSION;170
28.1;REFERENCES;176
29;CHAPTER 23. ON THE THEORY OF UNI-MOLECULAR REACTIONS;177
30;CHAPTER 24. THE TRANSPORT EQUATION IN THE CASE OF COULOMB INTERACTIONS;186
30.1;REFERENCE;193
31;CHAPTER 25. ON THE PROPERTIES OF METALS AT VERY LOW TEMPERATURES;194
31.1;REFERENCES;206
32;CHAPTER 26. SCATTERING OF LIGHT BY LIGHT;207
32.1;REFERENCES;207
33;CHAPTER 27. ON THE ORIGIN OF STELLAR ENERGY;208
33.1;REFERENCES;209
34;CHAPTER 28. ON THE ABSORPTION OF SOUND IN SOLIDS;210
34.1;1. THE PERTURBATION ENERGY;211
34.2;2. TRANSITION PROBABILITY;212
35;CHAPTER 29. ON THE THEORY OF PHASE TRANSITIONS;216
35.1;PART I;216
35.1.1;CONCLUSIONS;232
35.2;PART II;232
35.2.1;1. THE IMPOSSIBILITY OF THE EXISTENCE OF CRYSTALS WITH DENSITY ., WHICH DEPENDS ON ONE OR Two CO-ORDINATES;233
35.2.2;2. THE TRANSITION BETWEEN A LIQUID AND A CRYSTAL;235
35.2.3;3. LIQUID CRYSTALS;237
35.2.4;4. SURFACE PHASES;239
35.2.5;REFERENCES;239
36;CHAPTER 30. ON THE THEORY OF SUPERCONDUCTIVITY;240
36.1;1. THE INTERMEDIATE STATE;240
36.2;2. THE SHAPE OF THE SUPERCONDUCTING LAYERS;242
36.3;3. THE NUMBER OF LAYERS;245
36.4;REFERENCES;248
37;CHAPTER 31. ON THE STATISTICAL THEORY OF NUCLEI;249
37.1;1. DISTRIBUTION OF NUCLEAR LEVELS;249
37.2;2. THE WIDTH OF RESONANCE PEAKS FOR NEUTRONS;252
37.3;3. INELASTIC SCATTERING;254
37.4;4. NUCLEAR RADIATION;255
37.5;REFERENCES;255
38;CHAPTER 32. X-RAY SCATTERING BY CRYSTALS IN THE NEIGHBOURHOOD OF THE CURIE POINT;256
38.1;REFERENCE;266
39;CHAPTER 33. THE SCATTERING OF X-RAYS BY CRYSTALS WITH VARIABLE LAMELLAR STRUCTURE;267
39.1;REFERENCES;272
40;CHAPTER 34. PRODUCTION OF SHOWERS BY HEAVY PARTICLES;273
40.1;REFERENCES;273
41;CHAPTER 35. STABILITY OF NEON AND CARBON WITH RESPECT TO a-PARTICLE DISINTEGRATION;274
41.1;REFEBENCES;274
42;CHAPTER 36. THE CASCADE THEORY OF ELECTRONIC SHOWERS;275
42.1;REFEBENCES;288
43;CHAPTER 37. THE INTERMEDIATE STATE OF SUPRACONDUCTORS;289
43.1;REFERENCE;290
44;CHAPTER 38. ON THE DE HAAS—VAN ALPHEN EFFECT;291
44.1;REFERENCE;293
45;CHAPTER 39. ON THE POLARISATION OF ELECTRONSBY SCATTERING;294
45.1;REFERENCE;294
46;CHAPTER 40. ON THE NATURE OF THE NUCLEAR FORCES;295
46.1;REFERENCE;296
47;CHAPTER 41. ON THE "RADIUS" OF THE ELEMENTARYPARTICLES;297
47.1;REFERENCE;300
48;CHAPTER 42. ON THE SCATTERING OF MESOTRONSBY "NUCLEAR FORCES";301
48.1;REFERENCE;302
49;CHAPTER 43. THE ANGULAR DISTRIBUTION OF THE SHOWER PARTICLES;303
49.1;1. THE NUMBER OF CHARGED PARTICLES IN A SHOWER AT THEMAXIMUM POINT;303
49.2;2. DISTRIBUTION OF THE P ARTICLES IN A SHOWER OVER THE DIRECTIONS;305
49.3;3. THE WIDTH OF THE SHOWER;309
49.4;REFERENCES;311
50;CHAPTER 44. ON THE THEORY OF SECONDARY SHOWERS;312
50.1;REFERENCES;314
51;CHAPTER 45. ON THE SCATTERING OF LIGHT BY MESOTRONS;315
51.1;1. INTRODUCTION;315
51.2;2. COMPTON EFFECT;315
51.3;3. MESOTRON PAIR PRODUCTION BY Two PHOTONS;321
51.4;4. THE SCATTERING OF MESOTRONS IN A COULOMB FIELD;322
51.5;REFERENCES;323
52;CHAPTER 46. THE THEORY OF SUPERFLUIDITY OF HELIUM II;324
52.1;1. THE QUANTISATION OF THE MOTION OF LIQUIDS;324
52.2;2. THE ENERGY SPECTRUM OF A QUANTUM LIQUID;329
52.3;3. THE HEAT CAPACITY OF HELIUM II;331
52.4;4. SUPERFLUIDITY OF HELIUM II AT ABSOLUTE ZERO;333
52.5;5. HELIUM II AT TEMPERATURES ABOVE ABSOLUTE ZERO;335
52.6;6. THE FLOW THROUGH CAPILLARIES AND THE HEAT CONDUCTIVITY OF HELIUM II;340
52.7;7. EQUATIONS OF THE MACROSCOPIC HYDRODYNAMICS OF HELIUM II;344
52.8;8. PROPAGATION OF SOUND IIST HELIUM II;348
52.9;9. THE PROBLEM OF SUPERCONDUCTIVITY;350
52.10;REFERENCES;353
53;CHAPTER 47. A THEORY OF THE STABILITY OF STRONGLY CHARGED LYOPHOBIC SOLS AND THE COALESCENCE OF STRONGLY CHARGED PARTICLES IN ELECTROLYTIC SOLUTION;354
53.1;1. INTRODUCTION;354
53.2;2. A STABILITY CRITERION FOR WEAKLY CHARGED SOLS;356
53.3;3. CONTENTS OF THE INVESTIGATION;357
53.4;4. T H E INTERACTION BETWEEN PLANE SURFACES;358
53.5;5. THE CONDITIONS FOB THE COALESCENCE, UNDER THE INFLUENCE OF VAN DER WAALS FORCES, OF SURFACES SEPARATED BY A LAYER OF ELECTROLYTE;365
53.6;6. CONDITIONS FOR THE COALESCENCE OF CONVEX SURFACES SEPARATED BY A LAYER OF ELECTROLYTE;368
53.7;7. T H E STABILITY CRITERION FOR STRONGLY CHARGED SOLS;370
53.8;8. DISCUSSION OF THE RESULTS AND THEIR COMPARISON WITH EXPERIMENT;372
53.9;9. CONCLUSIONS;376
53.10;REFERENCES;377
54;CHAPTER 48. DRAGGING OF A LIQUID BY A MOVING PLATE;378
55;CHAPTER 49. ON THE THEORY OF THE INTERMEDIATE STATE OF SUPERCONDUCTORS;388
55.1;REFERENCES;402
56;CHAPTER 50. ON THE RELATION BETWEEN THE LIQUIDAND THE GASEOUS STATES OF METALS;403
57;CHAPTER 51. A NEW EXACT SOLUTION OF THENAVIER-STOKES EQUATIONS;406
58;CHAPTER 52. ON THE PROBLEM OF TURBULENCE;410
59;CHAPTER 53. ON THE HYDRODYNAMICS OF HELIUM II;415
59.1;REFERENCES;418
60;CHAPTER 54. ON THE THEORY OF SLOW COMBUSTION;419
61;CHAPTER 55. ON THE THEORY OF SCATTERING OF PROTONS BY PROTONS;427
61.1;1. INTRODUCTION;427
61.2;2. METHOD;428
61.3;3. ANALYSIS OF THE EXPERIMENTAL DATA;431
61.4;4. ON THE EXISTENCE OF A STABLE LEVEL OF DI-PROTON;433
61.5;5. CASE I > 0;436
61.6;6. SCATTERING OF LIGHT NUCLEI;437
61.7;REFERENCES;439
62;CHAPTER 56. ON THE ENERGY LOSS OF FAST PARTICLES BYIONISATION;440
62.1;REFERENCES;447
63;CHAPTER 57. ON A STUDY OF THE DETONATION OF CONDENSED EXPLOSIVES;448
63.1;REFERENCES;451
64;CHAPTER 58. THE DETERMINATION OF THE FLOW VELOCITY OF THE DETONATION PRODUCTSOF SOME GASEOUS MIXTURES;452
65;CHAPTER 59. DETERMINATION OF THE FLOW VELOCITYOF THE DETONATION PRODUCTS OF CONDENSED EXPLOSIVES;455
65.1;REFERENCES;459
66;CHAPTER 60. ON SHOCK WAVES AT LARGE DISTANCES FROM THE PLACE OF THEIR ORIGIN;460
67;CHAPTER 61. ON THE VIBRATIONS OF THE ELECTRONIC PLASMA;468
67.1;1. THE VIBRATIONS WITH A GIVEN INITIAL DISTRIBUTION;469
67.2;2. THE VIBRATIONS OF A PLASMA IN A EXTERNAL ELECTRIC FIELD;476
67.3;REFERENCES;483
68;CHAPTER 62. ON THE THERMODYNAMICS OF PHOTOLUMINESCENCE;484
69;CHAPTER 63. ON THE THEORY OF SUPERFLUIDITY OF HELIUM II;489
69.1;REFERENCES;491
70;CHAPTER 64. ON THE MOTION OF FOREIGN PARTICLES IN HELIUM II;492
70.1;REFERENCES;493
71;CHAPTER 65. ON THE ANGULAR MOMENTUM OF A SYSTEM OF TWO PHOTONS;494
71.1;REFERENCES;496
72;CHAPTER 66. ON THE THEORY OF SUPERFLUIDITY;497
72.1;REFERENCES;500
73;CHAPTER 67. THE EFFECTIVE MASS OF THE POLARON;501
73.1;1. INTRODUCTION;501
73.2;2. EFFECTIVE MASS OF THE POLARON;502
73.3;REFERENCES;506
74;CHAPTER 68. ON THE THEORY OF ENERGY TRANSFER DURING COLLISIONS III;507
74.1;1. DERIVATION OF THE GENERAL FORMULA;508
74.2;2. EVALUATION OF THE INTEGRAL;510
74.3;3. CROSS-SECTION;513
74.4;REFERENCES;516
75;CHAPTER 69. THE THEORY OF THE VISCOSITY OF HELIUM II: I. COLLISIONS OF ELEMENTARY EXCITATIONS IN HELIUM II;517
75.1;1. INTRODUCTION;518
75.2;2. SCATTERING OF PHONONS BY PHONONS;521
75.3;3. SCATTERING OF PHONONS BY ROTONS;524
75.4;4. THE SCATTERING OF ROTONS BY ROTONS;530
75.5;REFERENCES;533
76;CHAPTER 70. THE THEORY OF THE VISCOSITYOF HELIUM II II. CALCULATION OF THE VISCOSITY COEFFICIENT;534
76.1;5. THE KINETIC EQUATION;534
76.2;6. ROTON VISCOSITY;536
76.3;7. ESTABLISHMENT OF E QUILIBRITUM OF A PHONON GAS;538
76.4;8. VISCOSITY DUE TO THE SCATTERING OF PHONONS BY ROTONSAND OF PHONONS BY PHONONS;541
76.5;9. LENGTH OF THE MEAN FREE PATH CHARACTERISING VISCOSITY;549
76.6;10. TEMPERATURE DEPENDENCE OF THE PHONON COMPONENT OF THE VISCOSITY COEFFICIENT;551
76.7;11. TEMPERATURE DEPENDENCE OF THE VISCOSITY COEFFICIENT OF HELIUM II;552
77;CHAPTER 71. ON THE ELECTRON-POSITRON INTERACTION;555
77.1;REFERENCES;562
78;CHAPTER 72. THE EQUILIBRIUM FORM OF CRYSTALS;563
78.1;REFERENCES;568
79;CHAPTER 73. ON THE THEORY OF SUPERCONDUCTIVITY;569
79.1;1. INTRODUTCTION;569
79.2;2. BASIC EQUATIONS;571
79.3;3. THE SUPERCONDUCTING HALF-SPACE;577
79.4;4. THE SURFACE ENERGY AT THE BOUNDARY OF THE SUPERCONDUCTING AND NORMAL PHASES;580
79.5;5. SUPERCONDUCTING PLATES (FILMS);582
79.6;REFERENCES;591
80;CHAPTER 74. ON MULTIPLE PRODUCTION OF PARTICLESDURING COLLISIONS OF FAST PARTICLES;592
80.1;1. GENERAL RELATIONS;592
80.2;2. TOTAL NUMBER OF PARTICLES;594
80.3;3. DISTRIBUTION OF PARTICLES PRODUCED IN ENERGY AND DIRECTION;596
80.4;REFERENCES;608
81;CHAPTER 75. THE LIMITS OF APPLICABILITY OF THE THEORY OF BREMSSTRAHLUNGBY ELECTRONS AND OF THE CREATIONOF PAIRS AT LARGE ENERGIES;609
81.1;REFERENCES;611
82;CHAPTER 76. ELECTRON-CASCADE PROCESSESAT ULTRA-HIGH ENERGIES;612
82.1;REFERENCES;616
83;CHAPTER 77. EMISSION OF y-QUANTA DURING THE COLLISION OF FAST p-MESONS WITH NUCLEONS;617
83.1;REFERENCES;629
84;CHAPTER 78. THE REMOVAL OF INFINITIES IN QUANTUM ELECTRODYNAMICS;630
84.1;REFERENCES;633
85;CHAPTER 79. AN ASYMPTOTIC EXPRESSION FOR THE ELECTRON GREEN FUNCTION IN QUANTUM ELECTRODYNAMICS;634
85.1;REFERENCES;638
86;CHAPTER 80. AN ASYMPTOTIC EXPRESSION FOR THE PHOTON GREEN FUNCTION IN QUANTUM ELECTRODYNAMICS;639
86.1;REFERENCES;643
87;CHAPTER 81. THE ELECTRON MASS IN QUANTUM ELECTRODYNAMICS;644
87.1;REFERENCES;648
88;CHAPTER 82. ON THE ANOMALOUS ABSORPTION OF SOUND NEAR A SECOND ORDER PHASE TRANSITION POINT;649
88.1;REFERENCES;652
89;CHAPTER 83. A STUDY OF FLOW SINGULARITIES USING THE EULER-TRICOMI EQUATION;653
89.1;REFERENCES;656
90;CHAPTER 84. ON THE QUANTUM THEORY OF FIELDS;657
90.1;REFERENCES;671
91;CHAPTER 85. ON THE ROTATION OF LIQUID HELIUM;673
91.1;REFERENCES;676
92;CHAPTER 86. ON POINT INTERACTIONS IN QUANTUM ELECTRO DYNAMICS;677
92.1;REFERENCES;681
93;CHAPTER 87. THE GAUGE TRANSFORMATION OF THE GREEN FUNCTION FOR CHARGED PARTICLES;682
93.1;REFERENCES;687
94;CHAPTER 88. A HYDRODYNAMIC THEORY OF MULTIPLE FORMATION OF PARTICLES;688
94.1;1. INTRODUCTION;688
94.2;2. THERMODYNAMIC RELATIONS IN THE BREAK-UP OF THE SYSTEM;690
94.3;3. THE TOTAL NUMBER OF PARTICLES;698
94.4;4. ENERGY AND ANGLE DISTRIBUTION OF PARTICLES;701
94.5;5. COLLISIONS OF PARTICLES WITH DIFFERENT MASSES;712
94.6;APPENDIX I;717
94.7;APPENDIX II;719
94.8;APPENDIX III;721
94.9;REFERENCES;723
95;CHAPTER 89. ON THE QUANTUM THEORY OF FIELDS;724
95.1;1. THE FUNDAMENTAL EQUATIONS;724
95.2;2. THE ASYMPTOTICAL EXPRESSION FOR THE ELECTRON GREEN FUNCTION3;726
95.3;3. THE ASYMPTOTICAL EXPRESSION FOR THE PHOTON GREEN FUNCTION5;730
95.4;4. THE MASS OF THE ELECTRON IN QUANTUMELECTRODYNAMICS6;733
95.5;5. THE INFRARED CATASTROPHE7;736
95.6;6. THE GAUGE TRANSFORMATIONS OF THE GREEN FUNCTIONS OF CHARGED PARTICLES;738
95.7;7. THE GREEN FUNCTIONS IN THE MESON THEORY WITH WEAK PSEUDOSCALAR COUPLING8;740
96;CHAPTER 90. THE THEORY OF A FERMI LIQUID;746
96.1;1. THE ENERGY AS A FUNCTIONAL OF THE DISTRIBUTION ENERGY;746
96.2;2. RELATIONS WHICH FOLLOW FROM THE PRINCIPLE OF GALILEAN RELATIVITY;749
96.3;3. COMPRESSIBILITY OF THE FERMI LIQUID;750
96.4;4. MAGNETIC SUSCEPTIBILITY;751
96.5;5. THE KINETIC EQUATION;752
96.6;REFERENCE;753
97;CHAPTER 91. OSCILLATIONS IN A FERMI LIQUID;754
97.1;1. V IBRATIONS IN A FERMI LIQUID AT ABSOLUTE ZERO;754
97.2;2. VIBRATIONS OF A FERMI LIQUID AT TEMPERATURES ABOVE ZERO;759
97.3;3. SPIN WAVES IN A FERMI LIQUID;763
97.4;REFERENCES;764
98;CHAPTER 92. ON THE CONSERVATION LAWS FOR WEAK INTERACTIONS;765
98.1;1. COMBINED PARITY;765
98.2;2. PROPERTIES OF THE NEUTRINO;767
98.3;REFERENCES;769
99;CHAPTER 93. HYDRODYNAMIC FLUCTUATIONS;770
99.1;REFERENCE;771
100;CHAPTER 94. THE PROPERTIES OF THE GREEN FUNCTION FOR PARTICLES IN STATISTICS;772
101;CHAPTER 95. ON THE THEORY OF THE FERMI LIQUID;775
101.1;REFERENCE;783
102;CHAPTER 96. POSSIBILITY OF FORMULATION OF A THEORY OF STRONGLY INTERACTING FERMIONS;784
102.1;1. INTRODUCTION;784
102.2;2. EQUATION FOR THE VERTEX OPERATOR;785
102.3;3. SCALAR INTERACTION;787
102.4;4. VECTOR AND TENSOR INTERACTION;793
102.5;5. INTERACTION OF SEVERAL FIELDS;796
102.6;REFERENCE;798
103;CHAPTER 97. NUMERICAL METHODS OF INTEGRATING DIFFERENTIAL EQUATIONS BY THE MESH METHOD;799
103.1;1. GENERAL CONSIDERATIONS;799
103.2;2. INTEGRATION OF THE EQUATIONS OF FLUID DYNAMICS;801
103.3;3. DIFFERENCE SYSTEMS FOR THE EQUATION OF HEAT CONDUCTION;802
103.4;REFERENCE;809
104;CHAPTER 98. ON ANALYTIC PROPERTIES OF VERTEX PARTS IN QUANTUM FIELD THEORY;810
104.1;1. INTRODUCTION;810
104.2;2. GENERAL METHOD;811
104.3;3. GRAPHS FOR GREEN FUNCTIONS;812
104.4;4. NATURE OF SINGULARITIES;818
104.5;5. SUMMARY;819
104.6;6. APPLICATION TO SCATTERING AMPLITUDE;820
104.7;REFERENCE;820
105;CHAPTER 99. SMALL BINDING ENERGIES IN QUANTUM FIELD THEORY;821
105.1;REFERENCE;822
106;CHAPTER 100. FUNDAMENTAL PROBLEMS;823
106.1;REFERENCE;825
107;APPENDIX A;826
107.1;THE ELECTRICAL CONDUCTIVITY OF METALS;826
108;APPENDIX B: PAPERS NOT INCLUDED IN THE COLLECTED PAPERS;856




