Buch, Englisch, 443 Seiten, Format (B × H): 215 mm x 285 mm, Gewicht: 1357 g
ISBN: 978-3-642-11632-2
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
The Hydrodynamics of Swimming.- Swimming hydrodynamics: ten questions and the technical approaches needed to resolve them.- A potential-flow, deformable-body model for fluid-structure interactions with compact vorticity: application to animal swimming measurements.- Wake visualization of a heaving and pitching foil in a soap film.- A harmonic model of hydrodynamic forces produced by a flapping fin.- Flowfield measurements in the wake of a robotic lamprey.- Impulse generated during unsteady maneuvering of swimming fish.- Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies.- Time resolved measurements of the flow generated by suction feeding fish.- Powered control mechanisms contributing to dynamically stable swimming in porcupine puffers (Teleostei: Diodon holocanthus).- Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations.- Swimming by microscopic organisms in ambient water flow.- Water-walking devices.- Flapping flexible fish.- Vortex dynamics in the wake of a mechanical fish.- Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement.- The Physics of Flying.- PIV-based investigations of animal flight.- Wing–wake interaction reduces power consumption in insect tandem wings.- Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles.- Design and development considerations for biologically inspired flapping-wing micro air vehicles.- Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair.- The influence of airfoil kinematics on the formation of leading-edge vortices inbio-inspired flight.- Wake patterns of the wings and tail of hovering hummingbirds.- Characterization of vortical structures and loads based on time-resolved PIV for asymmetric hovering flapping flight.- Unsteady fluid-structure interactions of membrane airfoils at low Reynolds numbers.- Aerodynamic and functional consequences of wing compliance.- Shallow and deep dynamic stall for flapping low Reynolds number airfoils.- High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers.- High-speed stereo DPIV measurement of wakes of two bat species flying freely in a wind tunnel.- Time-resolved wake structure and kinematics of bat flight.- Experimental investigation of a flapping wing model.- Aerodynamics of intermittent bounds in flying birds.- Experimental analysis of the flow field over a novel owl based airfoil.- The aerodynamic forces and pressure distribution of a revolving pigeon wing.