E-Book, Englisch, 306 Seiten
Taylor The Theory of Critical Distances
1. Auflage 2010
ISBN: 978-0-08-055472-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
A New Perspective in Fracture Mechanics
E-Book, Englisch, 306 Seiten
ISBN: 978-0-08-055472-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Critical distance methods are extremely useful for predicting fracture and fatigue in engineering components. They also represent an important development in the theory of fracture mechanics. Despite being in use for over fifty years in some fields, there has never been a book about these methods - until now.
So why now? Because the increasing use of computer-aided stress analysis (by FEA and other techniques) has made these methods extremely easy to use in practical situations. This is turn has prompted researchers to re-examine the underlying theory with renewed interest.
The book begins with a general introduction to the phenomena of mechanical failure in materials: a basic understanding of solid mechanics and materials engineering is assumed, though appropriate introductory references are provided where necessary. After a simple explanation of how to use critical distance methods, and a more detailed exposition of the methods including their history and classification, the book continues by showing examples of how critical distance approaches can be applied to predict fracture and fatigue in different classes of materials. Subsequent chapters include some more complex theoretical areas, such as multiaxial loading and contact problems, and a range of practical examples using case studies of real engineering components taken from the author's own consultancy work.
The Theory of Critical Distances will be of interest to a range of readers, from academic researchers concerned with the theoretical basis of the subject, to industrial engineers who wish to incorporate the method into modern computer-aided design and analysis.
* Comprehensive collection of published data, plus new data from the author's own laboratories
* A simple 'how-to-do-it' exposition of the method, plus examples and case studies
* Detailed theoretical treatment
* Covers all classes of materials: metals, polymers, ceramics and composites
* Includes fracture, fatigue, fretting, size effects and multiaxial loading
David Taylor, Associate Professor in Materials Engineering at Trinity College Dublin, has thirty years' experience in the field of material failure. His activities include fundamental research in the fields of fracture mechanics and biomechanics, and consultancy work on industrial design and forensic failure analysis.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;The Theory of Critical Distances: A New Perspective in Fracture Mechanics;4
3;Copyright Page;5
4;Contents;8
5;Preface;14
6;Nomenclature;18
7;Chapter 1. Introduction;20
7.1;1.1 Stress–Strain Curves;21
7.2;1.2 Failure Mechanisms;22
7.3;1.3 Stress Concentrations;25
7.4;1.4 Elastic Stress Fields for Notches and Cracks;27
7.5;1.5 Fracture Mechanics;30
7.6;1.6 The Failure of Notched Specimens;35
7.7;1.7 Finite Element Analysis;36
7.8;1.8 Concluding Remarks: Limitations and Challenges in Failure Prediction;37
8;Chapter 2. The Theory of Critical Distances: Basics;40
8.1;2.1 Introduction;40
8.2;2.2 Example 1: Brittle Fracture in a Notched Specimen;40
8.3;2.3 Example 2: Fatigue Failure in an Engineering Component;44
8.4;2.4 Relating the TCD to LEFM;45
8.5;2.5 Finding Values for the Material Constants;46
8.6;2.6 Some Other TCD Methods: The LM, AM and VM;47
8.7;2.7 Example 3: Predicting Size Effects;49
8.8;2.8 Concluding Remarks;50
9;Chapter 3. The Theory of Critical Distances in Detail;52
9.1;3.1 Introduction;53
9.2;3.2 History;53
9.3;3.3 Related Theories;57
9.4;3.4 What is the TCD? Towards a General Definition;66
10;Chapter 4. Other Theories of Fracture;70
10.1;4.1 Introduction;71
10.2;4.2 Some Classifications;71
10.3;4.3 Mechanistic Models;73
10.4;4.4 Statistical Models;74
10.5;4.5 Modified Fracture Mechanics;74
10.6;4.6 Plastic-Zone and Process-Zone Theories;76
10.7;4.7 Damage Mechanics;78
10.8;4.8 Concluding Remarks;79
11;Chapter 5. Ceramics;82
11.1;5.1 Introduction;82
11.2;5.2 Engineering Ceramics;83
11.3;5.3 Building materials;103
11.4;5.4 Geological Materials;105
11.5;5.5 Nanomaterials;106
11.6;5.6 Concluding Remarks;108
12;Chapter 6. Polymers;112
12.1;6.1 Introduction;112
12.2;6.2 Notches;114
12.3;6.3 Size Effects;126
12.4;6.4 Constraint and the Ductile–Brittle Transition;128
12.5;6.5 Strain Rate and Temperature Effects;132
12.6;6.6 Discussion;133
13;Chapter 7. Metals;138
13.1;7.1 Introduction;138
13.2;7.2 Predicting Brittle Fracture Using the TCD;140
13.3;7.3 Discussion;152
14;Chapter 8. Composites;160
14.1;8.1 Introduction;161
14.2;8.2 Early Work on the TCD: Whitney and Nuismer;162
14.3;8.3 Does L Vary with Notch Size?;165
14.4;8.4 Non-damaging Notches;170
14.5;8.5 Practical Applications;173
14.6;8.6 Other Theoretical Models;174
14.7;8.7 Fracture of Bone;175
14.8;8.8 Values of L for Composite Materials;177
14.9;8.9 Concluding Remarks;177
15;Chapter 9. Fatigue;182
15.1;9.1 Introduction;182
15.2;9.2 Fatigue Limit Predictions;186
15.3;9.3 Finite Life Predictions;204
15.4;9.4 Multiaxial and Variable Amplitude Loading;206
15.5;9.5 Fatigue in Non-Metallic Materials;208
15.6;9.6 Other Recent Theories;210
15.7;9.7 Concluding Remarks;211
16;Chapter 10. Contact Problems;216
16.1;10.1 Introduction;216
16.2;10.2 Contact Situations;217
16.3;10.3 Contact Stress Fields;217
16.4;10.4 Fretting Fatigue;220
16.5;10.5 Other Contact-Related Failure Modes: Opportunities for the TCD;225
17;Chapter 11. Multiaxial Loading;232
17.1;11.1 Introduction;232
17.2;11.2 A Simplified View;233
17.3;11.3 Material Response: The Factor ƒp;234
17.4;11.4 Cracked Bodies: The Factor ƒc;238
17.5;11.5 Applying the TCD to Multiaxial Failure;239
17.6;11.6 Multiaxial Brittle Fracture;239
17.7;11.7 Multiaxial Fatigue;241
17.8;11.8 Size Effects in Multiaxial Failure;243
17.9;11.9 Out-of-Plane Shear;249
17.10;11.10 Contact Problems;251
17.11;11.11 Concluding Remarks;251
18;Chapter 12. Case Studies and Practical Aspects;254
18.1;12.1 Introduction;254
18.2;12.2 An Automotive Crankshaft;255
18.3;12.3 A Vehicle Suspension Arm;257
18.4;12.4 Failure Analysis of a Marine Component;259
18.5;12.5 A Component Feature: Angled Holes;262
18.6;12.6 Welded Joints;263
18.7;12.7 Other Joints;266
18.8;12.8 Three-Dimensional Stress Concentrations;269
18.9;12.9 Size Effects and Microscopic Components;272
18.10;12.10 Simplified Models;275
18.11;12.11 Concluding Remarks;276
19;Chapter 13. Theoretical Aspects;280
19.1;13.1 Introduction;280
19.2;13.2 What Is the TCD?;281
19.3;13.3 Why Does the TCD Work?;282
19.4;13.4 The TCD and Other Fracture Theories;284
19.5;13.5 Values of L;289
19.6;13.6 The Value of so/su;290
19.7;13.7 The Range and Limitations of the TCD;291
19.8;13.8 Concluding Remarks;293
20;Author Index;296
21;Subject Index;300
22;Color Plate Section;304