Buch, Englisch, 592 Seiten, Format (B × H): 185 mm x 260 mm, Gewicht: 1393 g
Emerging Applications
Buch, Englisch, 592 Seiten, Format (B × H): 185 mm x 260 mm, Gewicht: 1393 g
ISBN: 978-1-119-64299-2
Verlag: Wiley
In Band 3: Emerging Applications befassen sich die Herausgeber mit den Anwendungen von AIEgens in verschiedenen Bereichen, insbesondere für Bio-Imaging, fluoreszierende molekulare Schalter, elektrochrome Materialien, regenerative Medizin, den Nachweis organischer flüchtiger Schadstoffe, Hydrogele und Organogele. In diesem Band werden die folgenden Themen betrachtet:
* AIE-aktive Emitter und ihre Anwendung in OLEDs sowie die zirkular polarisierte Lumineszenz von Materialien mit aggregationsinduzierten Emissionen
* AIE-Polymerfilme für die optische Sensorik und Energiegewinnung, aggregationsinduzierte Elektrochemilumineszenz sowie Mechanolumineszenzmaterialien mit aggregationsinduzierten Emissionen
* Dynamische superauflösende Fluoreszenzbildgebung auf Grundlage von photoschaltbarem fluoreszierendem Spiropyran
* Visualisierung von Polymer-Mikrostrukturen
* Selbstorganisation von Mizellen und Vesikeln
* Neue Strategien für die Biosensorik und Zellbildgebung
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Elektronik, Optik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Bildgebende Verfahren, Nuklearmedizin, Strahlentherapie Radiologie, Bildgebende Verfahren
- Naturwissenschaften Chemie Physikalische Chemie Nuklearchemie, Photochemie, Strahlenchemie
Weitere Infos & Material
List of Contributors xv
Preface xxi
Preface to Volume 3: Applications xxiii
1 AIE-active Emitters and Their Applications in OLEDs 1
Qiang Wei, Jiasen Zhang, and Ziyi Ge
1.1 Introduction 1
1.2 Conventional Aggregation-induced Emissive Emitters 4
1.2.1 Blue Aggregation-induced Emissive Emitters 4
1.2.2 Green Aggregation-induced Emissive Emitters 7
1.2.3 Red Aggregation-induced Emissive Emitters 8
1.2.4 Aggregation-induced Emission-active Emitters-Based White OLED 9
1.3 High Exciton Utilizing Efficient Aggregation-induced Emissive Materials 13
1.3.1 Aggregation-induced Phosphorescent Emissive Emitters 13
1.3.2 Aggregation-induced Delayed Fluorescent Emitters 14
1.3.3 Hybridized Local and Charge Transfer Materials Aggregation-induced Emissive Emitters 15
1.4 Conclusion and Outlook 16
References 18
2 Circularly Polarized Luminescence of Aggregation-induced Emission Materials 27
Fuwei Gan, Chengshuo Shen, and Huibin Qiu
2.1 Introduction of Circularly Polarized Luminescence 27
2.2 Small Organic Molecules 28
2.3 Macrocycles and Cages 33
2.4 Metal Complexes and Clusters 35
2.5 Supramolecular Systems 37
2.6 Polymers 46
2.7 Liquid Crystals 50
2.8 Conclusions and Outlook 51
References 53
3 AIE Polymer Films for Optical Sensing and Energy Harvesting 57
Andrea Pucci
3.1 Introduction 57
3.2 Working Mechanism of AIEgens 59
3.3 AIE-doped Polymer Films for Optical Sensing 61
3.3.1 Mechanochromic AIE-doped Polymer Films 61
3.3.2 Thermochromic AIE-doped Polymer Films 65
3.3.3 Vapochromic AIE-doped Polymer Films 67
3.4 AIE-doped Polymer Films for Energy Harvesting 70
3.5 Conclusions 72
References 73
4 Aggregation-induced Electrochemiluminescence 79
Serena Carrara
4.1 Introduction: From Electrochemiluminescence to AI-ECL 79
4.1.1 Mechanisms of AI-ECL 81
4.2 Classification and Properties of AI-ECL luminophores 85
4.2.1 Metal Transition Complexes 85
4.2.2 Polymers and Polymeric Nanoaggregates 87
4.2.3 Organic Molecules 90
4.2.4 Hybrid and Functional Materials 93
4.3 Applications and Outlooks 95
References 98
5 Mechanoluminescence Materials with Aggregation-induced Emission 105
Zhiyong Yang, Juan Zhao, Eethamukkala Ubba, Zhan Yang, Yi Zhang, and Zhenguo Chi
5.1 Introduction 105
5.2 Mechanoluminescence of Organic Molecules Not Mentioned AIE 107
5.3 ML–AIE Materials 117
5.4 Summary and Outlook 132
References 133
6 Dynamic Super-resolution Fluorescence Imaging Based on Photo-switchable Fluorescent Spiropyran 139
Cheng Fan, Chong Li, and Ming-Qiang Zhu
6.1 Introduction 139
6.2 Materials and Methods 141
6.2.1 Materials 141
6.2.2 The Preparation of PSt-b-PEO Block Copolymer Micelles 141
6.2.3 Super-resolution Microscope 141
6.2.4 Super-resolution Imaging 141
6.3 Super-resolution Imaging of Block Copolymer Self-assembly 141
6.4 Optimization of Spatial Resolution 144
6.5 Temporal Resolution 145
6.6 Dynamic Super-resolution Imaging 147
6.7 Conclusion and Prospection 147
References 149
7 Visualization of Polymer Microstructures 151
Shunjie Liu, Yuanyuan Li, Ting Han, Jacky W. Y. Lam, and Ben Zhong Tang
7.1 Introduction 151
7.2 Synthetic Polymers 152
7.2.1 Polymer Self-assembly 152
7.2.2 Polymerization Reaction 154
7.2.3 Physical Process Visualization 155
7.2.3.1 Glass Transition Temperature 155
7.2.3.2 Solubility Parameter 157
7.2.3.3 Crystallization 158
7.2.3.4 Microphase Separation 158
7.2.4 Stimuli Response 161
7.2.4.1 Heat Response 161
7.2.4.2 Humidity Response 162
7.2.4.3 Other Response 164
7.3 Biological Polymers 164
7.3.1 DNA Synthesis 165
7.3.2 DNA Sequence 165
7.3.3 Protein Conformation 168
7.3.4 Protein Fibrillation 169
7.3.5 Other Process 171
7.4 Summary and Perspective 172
References 173
8 Self-assembly of Aggregation-induced Emission Molecules into Micelles and Vesicles with Advantageous Applications 179
Jinwan Qi, Jianbin Huang, and Yun Yan
8.1 General Background of Micelles and Vesicles 179
8.2 AIE Micelles 180
8.2.1 General Strategies Leading to AIE Micelles 180
8.2.1.1 Incorporating Tetraphenylethylene (TPE) Unit into Single-Chained Surfactants 180
8.2.1.2 Incorporating Tetraphenylethylene (TPE) Unit into Gemini Surfactants 182
8.2.1.3 Incorporating Platinum Complex into Amphiphiles 182
8.2.1.4 Polymeric AIE Micelles 183
8.2.1.5 Coassembled AIE Micelles 188
8.2.2 Applications of AIE Micelles 190
8.2.2.1 Untargeted Bioimaging 191
8.2.2.2 Targeted Bioprobing 192
8.2.2.3 Micellar Theranostics 193
8.2.2.4 Sensing 197
8.2.2.5 Visualization of Physical Chemistry Process 199
8.3 AIE Vesicles 203
8.3.1 AIE Vesicles Based on Synthetic Amphiphiles 203
8.3.1.1 Synthetic Ionic Amphiphiles 203
8.3.1.2 Synthetic Nonionic AIE Amphiphiles 203
8.3.1.3 Synthetic Nonamphiphilic AIE Molecules 205
8.3.2 Supramolecular AIE Vesicles 206
8.3.2.1 AIE Vesicles Directed by Host–Guest Chemistry 208
8.3.2.2 AIE Vesicles Based on Electrostatic Interactions 209
8.3.2.3 AIE Vesicles Based on Coordination Interactions 209
8.3.3 Applications of AIE Vesicles 210
8.3.3.1 Cell Models 210
8.3.3.2 Bioimaging 211
8.3.3.3 Theranostics 212
8.3.3.4 Light-harvesting 214
8.3.3.5 Other Applications 216
8.4 Summary and Outlooks 217
References 217
9 Vortex Fluidics-mediated Fluorescent Hydrogels with Aggregation-induced Emission Characteristics 221
Javad Tavakoli and Youhong Tang
9.1 Introduction 221
9.2 Tunning the Size and Property of AIEgens, a New Approach to Create FL Hydrogels with Superior Properties 222
9.3 AIEgens for Characterization of Hydrogels 231
9.4 Conclusion 238
References 238
10 Design and Preparation of Stimuli-responsive AIE Fluorescent Polymers-based Probes for Cells Imaging 243
Juan Qiao and Li Qi
10.1 Introduction 243
10.2 Design and Preparation Strategies for AIE–SRP Probes 246
10.2.1 Mechanism of AIE–SRP Probes 246
10.2.2 Stimuli-Responsive Polymers 247
10.2.2.1 Thermal-Sensitive Polymers 247
10.2.2.2 pH-Sensitive Polymers 247
10.2.2.3 Photo-Sensitive polymers 247
10.2.2.4 Protein-Sensitive Polymers 248
10.2.3 AIE Dyes 249
10.2.4 Combination of Stimuli-Sensitive Polymer and AIE Dyes 251
10.2.4.1 Chemical Synthesis 251
10.2.4.2 Physical Blending 256
10.3 Application of AIE–SRP Probes 257
10.3.1 Thermal-Sensitive Application 257
10.3.2 pH-Sensitive Application 259
10.3.3 Photo-Sensitive Application 260
10.3.4 Protein-Sensitive Application 260
10.3.5 MultiSensitive Application 260
10.4 Summary and Prospect 262
References 263
11 AIE: New Strategies for Cell Imaging and Biosensing 269
Tracey Luu, Bicheng Yao, and Yuning Hong
11.1 Introduction 269
11.2 Cellular Imaging 271
11.2.1 Cytoplasma Membrane Imaging 272
11.2.2 Mitochondria Imaging 273
11.2.3 Lysosome Imaging 275
11.2.4 Lipid Droplet Imaging 276
11.2.5 Nucleus Imaging 277
11.3 Biosensing 278
11.3.1 Ions 279
11.3.2 Lipids and Carbohydrates 281
11.3.3 Amino Acids, Proteins, and Enzymes 283
11.3.4 Nucleic Acids and Pathogens 286
11.4 Conclusion 289
References 289
12 AIE-based Systems for Imaging and Image-guided Killing of Pathogens 297
Jiangman Sun, Fang Hu, Yongjie Ma, Yufeng Li, Guan Wang, and Xinggui Gu
12.1 Introduction 297
12.2 Bacteria Imaging Based on AIEgens 298
12.2.1 Broad-spectrum Bacterial Imaging and Identification 299
12.2.2 Gram Positive and Gram Negative Bacteria Distinguishing 299
12.2.3 Long-term Bacterial Tracking 303
12.2.4 Live and Dead Bacteria Discrimination Based on AIEgens 304
12.3 Bacteria-targeted Imaging and Ablation Based on AIEgens 305
12.3.1 Surfactant-structure Based AIEgens for Bacterial Elimination 305
12.3.2 Photodynamic Therapy for Bacterial Elimination 309
12.3.2.1 Vancomycin-bacteria Interaction Mediated Photodynamic Ablation 309
12.3.2.2 Positive-charged AIE PS for Bacteria Ablation 311
12.3.2.3 Metabolic Labeling-mediated Imaging and Photodynamic Ablation 313
12.3.3 AIEgen with Antimicrobial Agents for Bacteria Elimination 315
12.3.4 Biodegradable Biocides for Bacteria Elimination 315
12.4 Bacterial Susceptibility Evaluation and Antibiotics Screening 315
12.5 Sensors for Bacterial Detection Based on AIEgens 317
12.5.1 Fluorescent Sensor Arrays 317
12.5.2 Biosensors Constructed by Electrospun Fibers 319
12.5.3 Micromotors for Bacterial Detection 320
12.6 Conclusions and Perspectives 321
References 321
13 AIEgen-based Trackers for Cancer Research and Regenerative Medicine 329
Chen Zhang and Kai Li
13.1 Introduction 329
13.2 AIEgens for Long-term Cancer Cell Tracking 330
13.2.1 AIEgen-based Long-term Cell Trackers with Emission in the Visible Range 330
13.2.2 AIEgen-based Long-term Cell Trackers with Near-infrared (NIR) Emission 334
13.2.3 AIEgen-based Long-term Cell Trackers with Multiphoton Absorption 335
13.2.4 AIEgen-based Hybrid or Multifunctional Systems for Cell Tracking 336
13.3 AIEgens fo