Buch, Englisch, 239 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g
Worked Problems 2
Buch, Englisch, 239 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g
Reihe: Foundations of Engineering Mechanics
ISBN: 978-3-642-05864-6
Verlag: Springer
Zielgruppe
Research
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Statik, Dynamik, Kinetik, Kinematik
- Naturwissenschaften Physik Mechanik Akustik, Schwingungsanalyse
- Technische Wissenschaften Technik Allgemein Physik, Chemie für Ingenieure
Weitere Infos & Material
1 Problems and Examples.- 2 Answers and solutions.- References.- A Statics of rods: basic equations.- A.1 Derivation of nonlinear equations of rod equilibrium.- A.2 Transformations of base vectors.- A.5 Vector equation of displacements of points of the rod axial line.- A.7 System of nonlinear equations of rod equilibrium.- A.8 Reduction of equations to dimensionless notation.- A.9 Boundary conditions.- A.10 External load and its behaviour under rod loading process.- A.11 Vector nonlinear equations of rod equilibrium in the bound coordinate system.- A.12 Equations of rod equilibrium in projections onto bound axes.- A.13 Special cases of equilibrium equations.- B Basic equations of rod kinematics.- B.2 Absolute and local derivatives of a vector with respect to time.- B.3 Velocity and acceleration of a point of the rod axial line.- C Basic equations a rod dynamics.- C.1 Nonlinear vector equations of motion of three-dimensional curvilinear rods.- C.2 Reduction of equations to dimensionless form.- C.3 Equations of small vibrations of rods (linear equations).- C.4 Equations of small vibrations in projections onto bound axes.- C.5 Equations of small vibrations of a rod whose axial line in the unloaded state is a plane curve.- D Exact numerical method of determining the frequencies and modes of rod vibrations.- D.1 Determination of eigen values (frequencies).- D.2 Determination of eigen functions for conservative problems.- E Approximate numerical determination of frequencies at small vibrations of rods.- F Approximate solution of equation of rod forced vibrations.