Stradiotto / Lundgren | Ligand Design in Metal Chemistry | Buch | 978-1-118-83983-6 | sack.de

Buch, Englisch, 448 Seiten, Format (B × H): 174 mm x 251 mm, Gewicht: 838 g

Stradiotto / Lundgren

Ligand Design in Metal Chemistry

Reactivity and Catalysis
1. Auflage 2016
ISBN: 978-1-118-83983-6
Verlag: Wiley

Reactivity and Catalysis

Buch, Englisch, 448 Seiten, Format (B × H): 174 mm x 251 mm, Gewicht: 838 g

ISBN: 978-1-118-83983-6
Verlag: Wiley


The design of ancillary ligands used to modify the structural and reactivity properties of metal complexes has evolved into a rapidly expanding sub-discipline in inorganic and organometallic chemistry. Ancillary ligand design has figured directly in the discovery of new bonding motifs and stoichiometric reactivity, as well as in the development of new catalytic protocols that have had widespread positive impact on chemical synthesis on benchtop and industrial scales.

Ligand Design in Metal Chemistry presents a collection of cutting-edge contributions from leaders in the field of ligand design, encompassing a broad spectrum of ancillary ligand classes and reactivity applications. Topics covered include:

- Key concepts in ligand design
- Redox non-innocent ligands
- Ligands for selective alkene metathesis
- Ligands in cross-coupling
- Ligand design in polymerization
- Ligand design in modern lanthanide chemistry
- Cooperative metal-ligand reactivity
- P,N Ligands for enantioselective hydrogenation
- Spiro-cyclic ligands in asymmetric catalysis

This book will be a valuable reference for academic researchers and industry practitioners working in the field of ligand design, as well as those who work in the many areas in which the impact of ancillary ligand design has proven significant, for example synthetic organic chemistry, catalysis, medicinal chemistry,  polymer science and materials chemistry.

Stradiotto / Lundgren Ligand Design in Metal Chemistry jetzt bestellen!

Weitere Infos & Material


List of Contributors xii

Foreword by Stephen L. Buchwald xiv

Foreword by David Milstein xvi

 Preface xvii

1 Key Concepts in Ligand Design: An Introduction 1
Rylan J. Lundgren and Mark Stradiotto

1.1 Introduction 1

1.2 Covalent bond classification and elementary bonding concepts 2

1.3 Reactive versus ancillary ligands 4

1.4 Strong- and weak-field ligands 4

1.5 Trans effect 6

1.6 Tolman electronic parameter 6

1.7 Pearson acid base concept 8

1.8 Multidenticity, ligand bite angle, and hemilability 8

1.9 Quantifying ligand steric properties 10

1.10 Cooperative and redox non-innocent ligands 12

1.11 Conclusion 12

References 13

2 Catalyst Structure and Cis–Trans Selectivity in Ruthenium-based Olefin Metathesis 15
Brendan L. Quigley and Robert H. Grubbs

2.1 Introduction 15

2.2 Metathesis reactions and mechanism 17

2.2.1 Types of metathesis reactions 17

2.2.2 Mechanism of Ru-catalyzed olefin metathesis 19

2.2.3 Metallacycle geometry 19

2.2.4 Influencing syn–anti preference of metallacycles 22

2.3 Catalyst structure and E/Z selectivity 24

2.3.1 Trends in key catalysts 24

2.3.2 Catalysts with unsymmetrical NHCs 26

2.3.3 Catalysts with alternative NHC ligands 29

2.3.4 Variation of the anionic ligands 31

2.4 Z-selective Ru-based metathesis catalysts 33

2.4.1 Thiophenolate-based Z-selective catalysts 33

2.4.2 Dithiolate-based Z-selective catalysts 34

2.5 Cyclometallated Z-selective metathesis catalysts 36

2.5.1 Initial discovery 36

2.5.2 Model for selectivity 37

2.5.3 Variation of the anionic ligand 38

2.5.4 Variation of the aryl group 40

2.5.5 Variation of the cyclometallated NHC substituent 41

2.5.6 Reactivity of cyclometallated Z-selective catalysts 42

2.6 Conclusions and future outlook 42

References 43

3 Ligands for Iridium-catalyzed Asymmetric Hydrogenation of Challenging Substrates 46
Marc-André Müller and Andreas Pfaltz

3.1 Asymmetric hydrogenation 46

3.2 Iridium catalysts based on heterobidentate ligands 49

3.3 Mechanistic studies and derivation of a model for the enantioselective step 57

3.4 Conclusion 63

References 64

4 Spiro Ligands for Asymmetric Catalysis 66
Shou-Fei Zhu and Qi-Lin Zhou

4.1 Development of chiral spiro ligands 66

4.2 Asymmetric hydrogenation 73

4.2.1 Rh-catalyzed hydrogenation of enamides 73

4.2.2 Rh- or Ir-catalyzed hydrogenation of enamines 73

4.2.3 Ir-catalyzed hydrogenation of a,ß-unsaturated carboxylic acids 75

4.2.4 Ir-catalyzed hydrogenation of olefins directed by the carboxy group 78

4.2.5 Ir-catalyzed hydrogenation of conjugate ketones 79

4.2.6 Ir-catalyzed hydrogenation of ketones 80

4.2.7 Ru-catalyzed hydrogenation of racemic 2-substituted aldehydes via dynamic kinetic resolution 81

4.2.8 Ru-catalyzed hydrogenation of racemic 2-substituted ketones via DKR 82

4.2.9 Ir-catalyzed hydrogenation of imines 84

4.3 Carbon–carbon bond-forming reactions 85

4.3.1 Ni-catalyzed hydrovinylation of olefins 85

4.3.2 Rh-catalyzed hydroacylation 85

4.3.3 Rh-catalyzed arylation of carbonyl compounds and imines 86

4.3.4 Pd-catalyzed umpolung allylation reactions of aldehydes, ketones, and imines 87

4.3.5 Ni-catalyzed three-component coupling reaction 87

4.3.6 Au-catalyzed Mannich reactions of azlactones 89

4.3.7 Rh-catalyzed hydrosilylation/cyclization reaction 89

4.3.8 Au-catalyzed [2 + 2] cycloaddition 90

4.3.9 Au-catalyzed cyclopropanation 91

4.3.10 Pd-catalyzed Heck reactions 91

4.4 Carbon–heteroatom bond-forming reactions 91

4.4.1 Cu-catalyzed N-H bond insertion reactions 91

4.4.2 Cu-, Fe-, or Pd-catalzyed O-H insertion reactions 93

4.4.3 Cu-catalyzed S-H, Si-H and B-H insertion reactions 95

4.4.4 Pd-catalyzed allylic amination 95

4.4.5 Pd-catalyzed allylic cyclization reactions with allenes 97

4.4.6 Pd-catalyzed alkene carboamination reactions 98

4.5 Conclusion 98

References 98

5 Application of Sterically Demanding Phosphine Ligands in Palladium-Catalyzed Cross-Coupling leading to C(sp2)-E Bond Formation (E = NH2, OH, and F) 104
Mark Stradiotto and Rylan J. Lundgren

5.1 Introduction 104

5.1.1 General mechanistic overview and ancillary ligand design considerations 105

5.1.2 Reactivity challenges 107

5.2 Palladium-catalyzed selective monoarylation of ammonia 108

5.2.1 Initial development 109

5.2.2 Applications in heterocycle synthesis 110

5.2.3 Application of Buchwald palladacycles and imidazole-derived monophosphines 112

5.2.4 Heterobidentate 2-P,N ligands: chemoselectivity and room temperature reactions 115

5.2.5 Summary 117

5.3 Palladium-catalyzed selective hydroxylation of (hetero)aryl halides 117

5.3.1 Initial development 118

5.3.2 Application of alternative ligand classes 120

5.3.3 Summary 122

5.4 Palladium-catalyzed nucleophilic fluorination of (hetero)aryl (pseudo)halides 123

5.4.1 Development of palladium-catalyzed C(sp2)-F coupling employing (hetero)aryl triflates 124

5.4.2 Discovery of biaryl monophosphine ancillary ligand modification 125

5.4.3 Extending reactivity to (hetero)aryl bromides and iodides 127

5.4.4 Summary 128

5.5 Conclusions and outlook 129

Acknowledgments 130

References 131

6 Pd-N-Heterocyclic Carbene Complexes in Cross-Coupling Applications 134
Jennifer Lyn Farmer, Matthew Pompeo, and Michael G. Organ

6.1 Introduction 134

6.2 N-heterocyclic carbenes as ligands for catalysis 135

6.3 The relationship between N-heterocyclic carbene structure and reactivity 136

6.3.1 Steric parameters of NHC ligands 136

6.3.2 Electronic parameters of NHC ligands 138

6.3.3 Tuning the electronic properties of NHC ligands 139

6.4 Cross-coupling reactions leading to C-C bonds that proceed through transmetalation 140

6.5 Kumada–Tamao–Corriu 141

6.6 Suzuki–Miyaura 148

6.6.1 The formation of tetra-ortho-substituted (hetero)biaryl compounds 149

6.6.2 Enantioselective Suzuki–Miyaura coupling 153

6.6.3 Formation of sp3-sp3 or sp2 -sp3 bonds 156

6.6.4 The formation of (poly)heteroaryl compounds 158

6.7 Negishi coupling 163

6.7.1 Mechanistic studies: investigating the role of additives and the nature of the active transmetalating species 166

6.7.2 Selective cross-coupling of secondary organozinc reagents 168

6.8 Conclusion 170

References 171

7 Redox Non-innocent Ligands: Reactivity and Catalysis 176
Bas de Bruin, Pauline Gualco, and Nanda D. Paul

7.1 Introduction 176

7.2 Strategy I. Redox non-innocent ligands used to modify the Lewis acid–base properties of the metal 179

7.3 Strategy II. Redox non-innocent ligands as electron reservoirs 181

7.4 Strategy III. Cooperative ligand-centered reactivity based on redox active ligands 192

7.5 Strategy IV. Cooperative substrate-centered radical-type reactivity based on redox non-innocent substrates 195

7.6 Conclusion 200

References 201

8 Ligands for Iron-based Homogeneous Catalysts for the Asymmetric Hydrogenation of Ketones and Imines 205
Demyan E. Prokopchuk, Samantha A. M. Smith, and Robert H. Morris

8.1 Introduction: from ligands for ruthenium to ligands for iron 205

8.1.1 Ligand design elements in precious metal homogeneous catalysts for asymmetric direct hydrogenation and asymmetric transfer hydrogenation 205

8.1.2 Effective ligands for iron-catalyzed ketone and imine


Mark Stradiotto, Department of Chemistry, Dalhousie University, Canada
Rylan Lundgren, Department of Chemistry, University of Alberta, Canada
Both professors have a well-established track-record of working in the field of organometallic ligand design and catalysis, and have published extensively on the subjects of metal-catalyzed cross-coupling, novel transition-metal bond activation, and asymmetric catalysis. They are co-inventors of the now commercialized DalPhos ligand family and have broad experience of the  field of ligand design. Professor Stradiotto has worked in the field of organometallic chemistry for the past fourteen years. Professor Lundgren earned his PhD under the supervision of Prof Stradiotto at Dalhousie University in 2010. Following a PDF at MIT and Caltech with Prof. Greg Fu, Rylan accepted a faculty position at the University of Alberta (Canada).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.