E-Book, Englisch, 422 Seiten, Web PDF
Stein / Litman Channels, Carriers, and Pumps
2. Auflage 2014
ISBN: 978-0-12-416583-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
An Introduction to Membrane Transport
E-Book, Englisch, 422 Seiten, Web PDF
ISBN: 978-0-12-416583-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
An introduction to the principles of membrane transport: How molecules and ions move across the cell membrane by simple diffusion and by making use of specialized membrane components (channels, carriers, and pumps). The text emphasizes the quantitative aspects of such movement and its interpretation in terms of transport kinetics. Molecular studies of channels, carriers, and pumps are described in detail as well as structural principles and the fundamental similarities between the various transporters and their evolutionary interrelationships. The regulation of transporters and their role in health and disease are also considered. - Provides an introduction to the properties of transport proteins: channels, carriers, and pumps - Presents up-to-date information on the structure of transport proteins and on their function and regulation - Includes introductions to transport kinetics and to the cloning of genes that code transport proteins - Furnishes a link between the experimental basis of the subject and theoretical model building
Wilfred Stein is the author of three previous books on membrane transport, the first appearing almost fifty years ago. He has edited numerous books and written some 180 papers on various aspects of membrane transport and especially transport kinetics. These papers, especially those written together with his colleague William Lieb, defined many of the concepts used today in discussing movement across cell membranes. More recently he has turned to the study of the kinetics of drugs used in cancer therapy and in the treatment of malaria. He has taught biochemistry, biophysics and physiology at the University of Manchester and the Hebrew University of Jerusalem and also at the Weizmann Institute in Israel. He is currently Emeritus Professor of Biophysics at the Hebrew University. He is married to a librarian and has four children and nine grandchildren.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Channels, Carriers, and Pumps;4
3;Copyright Page;5
4;Dedications;6
5;Contents;8
6;Preface to the First Edition;12
7;Preface to the Second Edition;14
8;List of Symbols;16
9;1 Structural Basis of Movement Across Cell Membranes;18
9.1;1.1 Membrane Structure: Electron Microscopy of Biological Membranes;18
9.2;1.2 Chemical Composition of Biological Membranes;20
9.2.1;1.2.1 Membrane Lipids;21
9.2.2;1.2.2 Membrane Proteins;22
9.2.3;1.2.3 Membrane Carbohydrates;22
9.3;1.3 Membrane Phospholipid Structures and Their Self-Assembly;23
9.4;1.4 Phase Transitions in Biological Membranes;24
9.5;1.5 Membrane Proteins: Their Structure and Arrangement;29
9.5.1;1.5.1 Proteins That Span the Membrane Only Once;30
9.5.2;1.5.2 Proteins That Span the Membrane More Than Once;31
9.6;1.6 Synthesis of Membrane Proteins;32
9.7;1.7 Quantitation of Membrane Dynamics;37
9.8;1.8 Traffic Across the Plasma Membrane;41
9.9;1.9 The Cell Membrane as a Barrier and as a Passage;49
9.10;Suggested Readings;50
9.10.1;General;50
9.10.2;Membrane Structure;50
9.10.3;Membrane Lipids;50
9.10.4;Liposomes;51
9.10.5;Membrane Proteins;51
9.10.6;Membrane Dynamics;51
9.10.7;Glycophorin;51
9.10.8;Lactose Permease;51
9.10.9;Hydropathy Plots;51
9.10.10;Membrane Protein Structure;52
9.10.11;Synthesis of Membrane Proteins;52
9.10.12;Endocytosis, Membrane Turnover;52
9.10.13;Clathrin-Coated Pits and Caveolae;52
9.10.14;Lipid Rafts;52
9.10.15;Cytoskeleton;53
10;2 Simple Diffusion of Nonelectrolytes and Ions;54
10.1;2.1 Diffusion as a Random Walk;54
10.2;2.2 The Electrical Force Acting on an Ion;63
10.3;2.3 Permeability Coefficients and Partition Coefficients;68
10.4;2.4 Measurement of Permeability Coefficients;73
10.5;2.5 Analysis of Permeability Data;79
10.6;2.6 The Membrane as a Hydrophobic Sieve;82
10.7;2.7 Osmosis and the Diffusion of Water;85
10.8;2.8 Comparison of Osmotic and Diffusive Flow of Water;90
10.9;Suggested Readings;96
10.9.1;General;96
10.9.2;Diffusion as a Random Walk;96
10.9.3;Chemical Potential;96
10.9.4;Electrical Potential;96
10.9.5;Flux Ratio Test;97
10.9.6;Permeability and Partition Coefficients;97
10.9.7;Measurement of Permeability Coefficients;97
10.9.8;NMR and ESR;97
10.9.9;Unstirred Layers;97
10.9.10;Plant Cell Permeabilities;97
10.9.11;Membrane as a Hydrophobic Sieve;97
10.9.12;Osmosis and the Diffusion of Water;97
10.9.13;Water Channels – The Aquaporins;97
10.9.14;Electroosmosis and Streaming Potential;97
11;3 Ion Channels Across Cell Membranes;98
11.1;3.1 The Gramicidin Channel;99
11.2;3.2 The Acetylcholine Receptor Channel;104
11.3;3.3 Conductances and Cross-Sectional Areas of Single Channels;107
11.4;3.4 An Experimental Interlude;114
11.4.1;3.4.1 Identification of Channels by Patch-Clamping;114
11.4.2;3.4.2 Measurements of Membrane Potential by Using Intracellular Microelectrodes or by Following Dye Distribution;117
11.5;3.5 Diffusion Potentials: Goldman–Hodgkin–Katz Equation;119
11.6;3.6 Regulation and Modulation of Channel Opening;123
11.6.1;3.6.1 The Potassium Channel of Sarcoplasmic Reticulum;123
11.6.2;3.6.2 Sodium and Potassium Channels of Excitable Tissue;125
11.6.3;3.6.3 The Cell-to-Cell Channel or Gap Junction;135
11.6.4;3.6.4 Regulation and Modulation of Some Other Channels;136
11.7;Suggested Readings;144
11.7.1;Internet Resources;144
11.7.2;General;144
11.7.3;Electrostatic (Born) Free Energy;144
11.7.4;Gramicidin Channel;144
11.7.5;Enzyme Kinetics;144
11.7.6;Acetylcholine Receptor;144
11.7.7;Cloning and Molecular Biology;145
11.7.8;Acetylcholine Receptor Structure;145
11.7.9;Ionic Diffusion;145
11.7.10;Ligand-gated Ion Channels;145
11.7.11;Charge Effects on Channel Conductance;145
11.7.12;Patch Clamping;145
11.7.13;Fluorescent Dyes;145
11.7.14;Goldman-Hodgkin-Katz Relation;146
11.7.15;Potassium Channels;146
11.7.16;Sodium Channels;146
11.7.17;Voltage-Gated Channels;146
11.7.18;Cell-to-Cell Channel;146
11.7.19;Calcium Channel;147
12;4 Carrier-Mediated Transport: Facilitated Diffusion;148
12.1;4.1 Inhibition of Mediated Transport Systems;149
12.2;4.2 Kinetics of Carrier Transport;153
12.2.1;4.2.1 The Zero-Trans Experiment;154
12.2.2;4.2.2 Competitive and Noncompetitive Inhibition of Transport;156
12.2.3;4.2.3 The Equilibrium Exchange Experiment;158
12.2.4;4.2.4 Stimulation of Transport by Trans Concentrations of Substrate;159
12.3;4.3 The Carrier Model;161
12.4;4.4 Valinomycin: An Artificial Membrane Carrier That Works by a Solubility-Diffusion Mechanism;162
12.5;4.5 Two Conformations of the Carrier;165
12.6;4.6 A Deeper Analysis of the Kinetics of Carrier Transport;166
12.6.1;4.6.1 Some Relations Between the Transport Parameters for the Different Experimental Procedures;167
12.6.2;4.6.2 Carrier Systems May Behave Asymmetrically;169
12.7;4.7 Electrogenic Aspects of Carrier Transport;169
12.8;4.8 Some Individual Transport Systems;175
12.8.1;4.8.1 GLUT4: The Insulin-Regulated Glucose Transporter;175
12.8.2;4.8.2 The Amino Acid Carriers;177
12.8.3;4.8.3 The Organic Cation Transporters: The OCTs;179
12.9;4.9 An Overall View of the Membrane Carriers;182
12.10;4.10 The Full Equation for Carrier Transport;190
12.11;Suggested Readings;194
12.11.1;General;194
12.11.2;Molecular Biology of Glucose Transporter;194
12.11.3;Kinetics of Carrier Transport;194
12.11.4;Valinomycin;194
12.11.5;Two Conformations of the Carrier;194
12.11.6;Electrogenic Aspects of Carrier Transport;195
12.11.7;Amino Acid Transporters;195
12.11.8;Organic Cation Transporters;195
12.11.9;Insulin Regulation of Glucose Transport;195
12.11.10;The Warburg Effect: Glucose Metabolism in Cancer and other Proliferating Cells;195
13;5 Coupling of Flows of Substrates: Antiporters and Symporters;196
13.1;5.1 Countertransport on the Simple Carrier;197
13.2;5.2 Exchange-Only Systems: The Antiporters;198
13.2.1;5.2.1 The Kinetics of Antiport;199
13.2.2;5.2.2 Slippage and Leakage in Coupled Transport Systems;202
13.2.3;5.2.3 Asymmetry of Antiporters;203
13.2.4;5.2.4 How the Stoichiometry of Substrate Binding Determines the “Intensity” of Concentration;203
13.2.5;5.2.5 Some Particular Antiporter Systems;204
13.2.5.1;5.2.5.1 The Na+/H+ Antiporter as a Transducer of Cell-to-Cell Signals;204
13.2.5.2;5.2.5.2 Role of the Na+/Ca2+ Antiporter in the Regulation of Intracellular Calcium;207
13.2.6;5.2.6 How the Structural Basis of the Antiporters Is Beginning to Be Elucidated;209
13.2.6.1;5.2.6.1 The Antiporter EmrE;209
13.2.6.2;5.2.6.2 The Sodium/Proton Antiporters;216
13.3;5.3 The Symporters, Cotransport Systems Where Two (or More) Substrates Ride Together in Symport on a Simple Carrier;222
13.3.1;5.3.1 Crane’s Gradient Hypothesis;224
13.3.2;5.3.2 V and K Kinetics in Cotransport;227
13.3.2.1;5.3.2.1 K Kinetics;227
13.3.2.2;5.3.2.2 V and K Kinetics;229
13.3.3;5.3.3 Cis and Trans Inhibition Between Cosubstrates as Tests of the Cotransport (Symport) Model;229
13.3.4;5.3.4 Stoichiometry of Symtransport;231
13.3.5;5.3.5 Electrogenic Aspects of Cotransport: The Equilibrium Potential of a Cotransport System;232
13.3.6;5.3.6 Some Individual Cotransporters Described;234
13.3.6.1;5.3.6.1 The Lactose and Melibiose Symporters of E. coli;234
13.3.6.2;5.3.6.2 Accumulation of a Neurotransmitter in Storage Granules;239
13.3.6.3;5.3.6.3 The Ubiquitous Na+ K+ 2Cl- Cotransporter;240
13.3.7;5.3.7 How the Structural Basis of the Symporters Is Beginning to Be Elucidated;243
13.3.7.1;5.3.7.1 LacY—The Lactose Permease of E. coli, the Lactose/Proton Symporter;243
13.3.7.2;5.3.7.2 The Sodium–Sugar Symporters and Their Homologs;250
13.3.7.2.1;The Rocking Bundle Model;259
13.4;Suggested Readings;259
13.4.1;General;259
13.4.2;Countertransport;259
13.4.3;Kinetics of Antiport;260
13.4.4;ADP/ATP Exchange;260
13.4.5;The Bacterial Proton/Multidrug Antiporters;260
13.4.6;Na+/H+ Antiporter;260
13.4.7;Growth Factors;261
13.4.8;Na+-Ca2+ Antiporter;261
13.4.9;Electrogenicity;261
13.4.10;Cotransport Systems;261
13.4.11;Stoichiometry of Cotransport;261
13.4.12;Melibiose Transport;262
13.4.13;Lactose Permease;262
13.4.14;Molecular Biology of the Sodium-Glucose Symporter;262
13.4.15;Amino Acid Cotransport;262
13.4.16;Na+-K+ - 2Cl- Cotransporter;262
13.4.17;Structural Basis of the Symporters;263
14;6 Primary Active Transport Systems;264
14.1;6.1 The Sodium Pump of the Plasma Membrane;264
14.1.1;6.1.1 The Function of the Sodium Pump;264
14.2;6.2 The Calcium Pump of Sarcoplasmic Reticulum;272
14.2.1;6.2.1 Structural Studies on the Calcium ATPase (SERCA1a);276
14.2.2;6.2.2 Structural Studies on the Na+,K+-ATPase;281
14.2.2.1;6.2.2.1 A Comparison of the E2 and E1 Conformations of the N+,K+-ATPase;281
14.2.2.2;6.2.2.2 Functional Role of the ß-Chain;285
14.2.2.3;6.2.2.3 FXYD Subunits and Regulation;287
14.3;6.3 The Calcium Pump of the Plasma Membrane;290
14.4;6.4 The H+, K+-ATPase of Gastric Mucosa: The Proton Pump of the Stomach;294
14.4.1;6.4.1 The P-Type ATPases in the Context of Protein Evolution;296
14.5;6.5 The Rotary ATPases;299
14.5.1;6.5.1 Structure of the Rotary ATPases;300
14.5.2;6.5.2 Mechanism of Action of the F0F1-ATPases;304
14.6;6.6 The Vacuolar Proton-Activated ATPase;313
14.7;6.7 Bacteriorhodopsin: A Light-Driven Proton Pump;313
14.8;6.8 MDR—Drug Pumps;319
14.8.1;6.8.1 The Discovery of MDR;319
14.8.2;6.8.2 The ABC Superfamily;321
14.8.3;6.8.3 Topology;321
14.8.4;6.8.4 Function;326
14.8.5;6.8.5 ATPase Activity;331
14.8.6;6.8.6 Substrates and Inhibitors of P-gp—Clarification of Concepts;333
14.8.7;6.8.7 Catalytic Cycle of P-gp;338
14.8.8;6.8.8 Structure;340
14.9;Suggested Readings;342
14.9.1;General;342
14.9.2;Thermodynamics of Pumping;342
14.9.3;Sodium Pump;342
14.9.4;Calcium Pump of Sarcoplasmic Reticulum;343
14.9.5;Calcium Pump of Plasma Membrane;343
14.9.6;Gastric H+K+-ATPase;343
14.9.7;Multidrug Resistance;343
14.9.8;F0F1 ATPases;344
14.9.9;Vacuolar and Anion Pumps;344
14.9.10;Bacteriorhodopsin;344
15;7 Regulation and Integration of Transport Systems;346
15.1;7.1 Regulation of Cell Volume;347
15.1.1;7.1.1 How the Post–Jolly Equation (Relating Cell Volume, Cell Content, and the Pump-Leak Ratio, Together with the Donnan Di...;349
15.1.2;7.1.2 Short-Term Regulation of Cell Volume;356
15.1.2.1;7.1.2.1 RVD—A Process Activated by Cell Swelling;357
15.1.2.2;7.1.2.2 RVI—A Process Activated by Cell Shrinkage;358
15.1.2.2.1;Cotransport of Solutes and Water;361
15.1.2.2.2;Experimental Data;366
15.1.2.2.3;Molecular Dynamics Simulations;370
15.2;7.2 Integration of Transport Systems;373
15.2.1;7.2.1 Epithelia, with Special Reference to the Kidney;373
15.2.1.1;7.2.1.1 Morphology of Epithelia;373
15.2.1.2;7.2.1.2 Tight, Intermediate, and Leaky Epithelia;375
15.2.1.3;7.2.1.3 The Mammalian Kidney;378
15.2.1.4;7.2.1.4 The Transport System “Menu”;379
15.2.2;7.2.2 A Tight Epithelium: The Collecting Duct;382
15.2.3;7.2.3 An “Intermediate” Epithelium: The Thick Ascending Limb of the Mammalian Kidney;384
15.2.4;7.2.4 A Leaky Epithelium: The Proximal Tubule;386
15.2.5;7.2.5 Tight, Intermediate, and Leaky Epithelia Compared;390
15.2.6;7.2.6 The Control of Glucose Transport Across the Intestine;390
15.2.7;7.2.7 Transporters and the Control of Cell Migration;394
15.2.8;7.2.8 Vectorial Assembly and Sorting of Membrane Transport Systems in Epithelia;398
15.3;7.3 Channels of Death;400
15.4;Suggested Readings;408
15.4.1;General;408
15.4.2;Cell Volume: Long Term;408
15.4.3;Cell Volume: Short Term;408
15.4.4;Cotransport of Sugars, Salt and Water;408
15.4.5;Kidney Structure;408
15.4.6;Types of Epithelia;409
15.4.7;Transport System Menu;409
15.4.8;Intestinal Glucose Transport;409
15.4.9;Water Channels;409
15.4.10;Cell Migration and Cell Volume Control;409
15.4.11;Calcium Transport across Epithelia;409
15.4.12;Vectorial Assembly and Sorting;410
15.4.13;Apoptosis;410
16;Appendix: Fundamental Constants, Conversion Factors, and Some Useful Approximations;412
16.1;Fundamental Constants;412
16.2;Conversion Factors;412
16.3;Some Useful Approximations (for Back-of-the-Envelope Calculations);413
17;Index;414