Somersalo / Päivärinta | Inverse Problems in Mathematical Physics | Buch | 978-3-662-13928-8 | sack.de

Buch, Englisch, Band 422, 256 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g

Reihe: Lecture Notes in Physics

Somersalo / Päivärinta

Inverse Problems in Mathematical Physics

Proceedings of The Lapland Conference on Inverse Problems Held at Saariselkä, Finland, 14¿20 June 1992
Softcover Nachdruck of the original 1. Auflage 1993
ISBN: 978-3-662-13928-8
Verlag: Springer

Proceedings of The Lapland Conference on Inverse Problems Held at Saariselkä, Finland, 14¿20 June 1992

Buch, Englisch, Band 422, 256 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g

Reihe: Lecture Notes in Physics

ISBN: 978-3-662-13928-8
Verlag: Springer


The book contains presentations of recent and ongoing
research on inverse problems and its application to
engineering and physical sciences. The articles are
structured around three closely related topics: Inverse
scattering problems, inverse boundary value problems, and
inverse spectral problems. The applications range from
quantum and electromagnetic scattering to medical imaging,
geophysical sounding of the Earth, and non-destructive
material evaluation. The book gives an up-to-date
presentation of the most recent developments in these
rapidlychanging and evolving fields of applied research.
The contributors of the volume give extra emphysis to the
pedagogical aspects of their presentation to make this
collection eysily accessible to graduate students as well as
to people working on nearby fields of research.

Somersalo / Päivärinta Inverse Problems in Mathematical Physics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Stability for the crack determination problem.- Layer-stripping reconstruction algorithms in impedance imaging.- Determination of the inhomogeneous term in evolution equations.- Target signatures for Maxwell's equations.- The use of Graßmann identities for inversion of a general model in diffuse tomography.- Generic uniqueness and stability in some inverse parabolic problem.- Regularization — Analytic and stochastic aspects.- Problems in impedance imaging.- Uniqueness for inverse problems in quasilinear differential equations.- Diffraction by periodic structures.- On uniqueness in inverse obstacle scattering.- The inverse Scattering Problem for a homogeneous Bi-isotropic Slab Using Transient data.- On the inverse scattering problem for rational reflection coefficients.- Some geometric aspects of multidimensional inverse spectral problems.- Three dimensional time harmonic inverse electromagnetic scattering.- Determination of a radially symmetric speed of sound from transmission eigenvalues.- A finite difference method for the inverse scattering problem at fixed frequency.- Present status of the generalized Marchenko method for the solution of the inverse scattering problem in three dimensions.- Inverse spectral problems in riemannian geometry.- Local results for a two dimensional inverse conductivity problem.- Inverse scattering at fixed energy for exponentially decreasing potentials.- Inverse problems related to integrable nonlinear partial differential equations.- Some estimates of green function and applications in inverse scattering theory for the Schrödinger operator with a singular potential.- Reconstruction of electromagnetic parameters from boundary measurements.- Inverse boundary value problems for Schrödinger operators.- Linearizations of anisotropicinverse problems.- Optimal parameter choice for Tikhonov regularization in Hilbert scales.- Identification of the filtration coefficient.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.