Fundamentals and Applications
E-Book, Englisch, 410 Seiten
ISBN: 978-1-78242-396-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Microbial Electrochemical and Fuel Cells: Fundamentals and Applications;4
3;Copyright;5
4;Contents;6
5;Contributors;10
6;Woodhead Publishing Series in Energy;12
7;Part One: The workings of microbial fuel cells;18
7.1;Chapter 1: An introduction to microbial fuel cells;20
7.1.1;1.1. Introduction;20
7.1.2;1.2. Fuel cells;21
7.1.2.1;1.2.1. Cell voltage;22
7.1.2.2;1.2.2. Mass transport and concentration effects;24
7.1.2.3;1.2.3. Figures of merit;25
7.1.3;1.3. Biological FCs;26
7.1.3.1;1.3.1. Types of biological FCs;27
7.1.4;1.4. The MFC;28
7.1.4.1;1.4.1. Anode microbial behavior;29
7.1.4.2;1.4.2. MFCs without mediators;31
7.1.4.2.1;1.4.2.1. Performance indicators;31
7.1.4.3;1.4.3. MFC bacteria;34
7.1.4.4;1.4.4. MFC materials and operating conditions;35
7.1.4.5;1.4.5. Applications of MFCs;38
7.1.5;1.5. Biological enzyme FC;41
7.1.6;1.6. Conclusions;42
7.1.7;References;43
7.2;Chapter 2: Electrochemical principles and characterization of bioelectrochemical systems;46
7.2.1;2.1. Introduction;46
7.2.2;2.2. Electrochemical principles;47
7.2.2.1;2.2.1. Electrochemical thermodynamics and cell potential;47
7.2.2.2;2.2.2. Electrochemical kinetics;52
7.2.2.2.1;2.2.2.1. Electrochemical reaction model of kinetics;52
7.2.2.3;2.2.3. Mass transport and electrochemical reactions;56
7.2.3;2.3. Voltammetric electrochemical methods;58
7.2.3.1;2.3.1. Linear sweep voltammetry;59
7.2.3.2;2.3.2. Cyclic voltammetry;60
7.2.3.3;2.3.3. CV for the study of microbial electron transfer;62
7.2.3.4;2.3.4. Voltammetry in the presence of donor substrates;63
7.2.4;2.4. Rotating disk and ring-disk electrodes;66
7.2.4.1;2.4.1. Rotating ring-disk electrode;68
7.2.4.2;2.4.2. RDE and RRDE used in biological fuel cells;69
7.2.5;2.5. Electrochemical impedance spectroscopy;69
7.2.5.1;2.5.1. Polarization resistance;72
7.2.5.2;2.5.2. Warburg impedance;74
7.2.5.2.1;2.5.2.1. EIS for MFCs;75
7.2.6;2.6. Chronoamperometry;76
7.2.7;2.7. Square wave voltammetry;78
7.2.8;2.8. Differential pulse voltammetry;79
7.2.9;2.9. Other techniques;79
7.2.10;References;80
7.3;Chapter 3: Electron transfer mechanisms in biofilms;84
7.3.1;3.1. Introduction;84
7.3.2;3.2. Mechanisms for delivering electrons to an anode;90
7.3.2.1;3.2.1. Direct electron transfer in biofilms on anodes;91
7.3.2.2;3.2.2. Mediated electron transfer;96
7.3.2.2.1;3.2.2.1. Self-secreted mediators;97
7.3.2.2.2;3.2.2.2. Cell membrane modifications to enhance electron transfer;98
7.3.3;3.3. Mechanisms for electron uptake from cathodes;99
7.3.3.1;3.3.1. Extracellular electron uptake mechanisms of the model electrogens G. sulfurreducens and S. oneidensis;101
7.3.3.2;3.3.2. Extracellular electron uptake mechanisms of oxygen- and nitrate-reducing bacteria;102
7.3.3.2.1;3.3.2.1. Oxygen-reducing bacteria on cathodes;102
7.3.3.2.2;3.3.2.2. Nitrate-, nitrite-, and nitrous oxide-removing bacteria on cathodes;105
7.3.3.3;3.3.3. Extracellular electron uptake mechanisms of hydrogen-producing, methanogenic, and acetogenic microorganisms;105
7.3.3.3.1;3.3.3.1. Hydrogen-producing bacteria;105
7.3.3.3.2;3.3.3.2. Methanogenic archaea;106
7.3.3.3.3;3.3.3.3. Acetogenic bacteria;108
7.3.4;3.4. EET between microorganisms;109
7.3.4.1;3.4.1. Interspecies electron transfer;109
7.3.4.2;3.4.2. Electron transfer along ``cable´´ bacteria;112
7.3.5;3.5. Future trends and research needs;113
7.3.6;3.6. Conclusion;115
7.3.7;Acknowledgments;116
7.3.8;References;116
8;Part Two: Materials for microbial fuel cells and reactor design;132
8.1;Chapter 4: Anode materials for microbial fuel cells;134
8.1.1;4.1. Introduction;134
8.1.2;4.2. Anode materials;135
8.1.2.1;4.2.1. Carbon materials;135
8.1.2.2;4.2.2. Metal materials;138
8.1.2.3;4.2.3. Composite materials;140
8.1.2.4;4.2.4. Three-dimensional macroporous-based anode;141
8.1.3;4.3. Surface modification of MFC anode materials;142
8.1.3.1;4.3.1. Surface methods for anode modification;142
8.1.3.2;4.3.2. Anode modification with nanomaterials;145
8.1.3.2.1;4.3.2.1. Anode modification with carbon nanomaterials;145
8.1.3.2.2;4.3.2.2. Anode modification with metal or metal oxide;150
8.1.3.2.3;4.3.2.3. Anode modification with polymers;152
8.1.3.2.4;4.3.2.4. Anode modification with composite materials;155
8.1.4;4.4. Conclusions and future perspective;161
8.1.5;References;163
8.2;Chapter 5: Membranes and separators for microbial fuel cells;170
8.2.1;5.1. Introduction;170
8.2.2;5.2. Cell separators;172
8.2.2.1;5.2.1. Diaphragms and porous polymer membranes;172
8.2.2.2;5.2.2. Semipermeable membranes: ion-exchange membranes;173
8.2.3;5.3. Transport processes in membranes and diaphragms;175
8.2.3.1;5.3.1. Ion transport processes;175
8.2.3.2;5.3.2. Ion-exchange membranes and the transport of ions;176
8.2.4;5.4. Membranes for microbial fuel cells;178
8.2.4.1;5.4.1. Ion-exchange membranes;178
8.2.4.1.1;5.4.1.1. Cation-exchange membranes;178
8.2.4.1.2;5.4.1.2. Anion-exchange membranes;182
8.2.4.2;5.4.2. Membrane requirements in MFCs;185
8.2.4.3;5.4.3. Ion and mass transfer processes across ion-exchange membranes in MFCs;185
8.2.4.3.1;5.4.3.1. Cation transport;186
8.2.4.3.2;5.4.3.2. Anion transfer;187
8.2.4.4;5.4.4. Porous separators;189
8.2.4.5;5.4.5. Membrane electrode assemblies;190
8.2.5;5.5. Future trends;192
8.2.6;References;193
8.3;Chapter 6: Cathodes for microbial fuel cells;196
8.3.1;6.1. Introduction;196
8.3.2;6.2. Redox reactions for MFCs;196
8.3.3;6.3. The oxygen reduction mechanism;200
8.3.3.1;6.3.1. ORR in metal electrodes;201
8.3.3.2;6.3.2. ORR at non-metal electrodes;205
8.3.3.2.1;6.3.2.1. Graphite and carbon;205
8.3.3.2.2;6.3.2.2. Carbon nanotubes;205
8.3.4;6.4. Hydrogen evolution mechanism;206
8.3.5;6.5. ORR cathode configuration in MFC;209
8.3.6;6.6. Non-precious metal cathodes;210
8.3.6.1;6.6.1. Cathodic materials and composites;210
8.3.6.2;6.6.2. Cathodic configurations;213
8.3.6.2.1;6.6.2.1. Plane cathodes;213
8.3.6.2.2;6.6.2.2. Packed cathodes;213
8.3.6.2.3;6.6.2.3. Tubular cathodes;213
8.3.6.2.4;6.6.2.4. Brush cathodes;214
8.3.6.3;6.6.3. Cathodic treatments;214
8.3.6.3.1;6.6.3.1. Cathodic coating;214
8.3.6.3.2;6.6.3.2. Cathodic surface treatment;215
8.3.7;6.7. Enzymatic cathodes;215
8.3.7.1;6.7.1. Typical enzymes at cathode;216
8.3.7.2;6.7.2. Major applications;217
8.3.7.2.1;6.7.2.1. Treatment;220
8.3.7.2.2;6.7.2.2. Product synthesis;220
8.3.7.3;6.7.3. Major challenges;221
8.3.8;6.8. Future trends;222
8.3.9;Acknowledgment;222
8.3.10;References;223
8.4;Chapter 7: Reactor design and scale-up;232
8.4.1;7.1. Introduction;232
8.4.2;7.2. Performance indicators for MFCs;233
8.4.2.1;7.2.1. Electrochemical performance indicators;234
8.4.2.2;7.2.2. System performance indicators;236
8.4.3;7.3. What governs the performance of MFCs;239
8.4.4;7.4. Determining the performance of MFCs;241
8.4.5;7.5. MFC architectures;245
8.4.6;7.6. Connectivity and control mechanisms;247
8.4.6.1;7.6.1. MFC connectivity and voltage reversal;248
8.4.7;7.7. MFC scale-up, application, and integration;252
8.4.8;7.8. Future trends;254
8.4.9;References;256
9;Part Three: Applications of microbial electrochemical and fuel cells;262
9.1;Chapter 8: Microbial fuel cells for wastewater treatment and energy generation;264
9.1.1;8.1. Wastewater treatment;264
9.1.2;8.2. Wastewater-energy-environment nexus;264
9.1.3;8.3. Energy requirements for wastewater treatment;266
9.1.4;8.4. Energy recovery in wastewater treatment systems;268
9.1.4.1;8.4.1. Energy recovery from wastewater sludge;269
9.1.4.1.1;8.4.1.1. Anaerobic digestion;269
9.1.4.1.2;8.4.1.2. Thermochemical processes;270
9.1.4.1.3;8.4.1.3. Other energy recovery options;271
9.1.5;8.5. Microbial fuel cells;271
9.1.5.1;8.5.1. Advantages of MFCs over other available options;273
9.1.5.2;8.5.2. Higher energy recovery via MFCs (energy recovery options from wastewater);274
9.1.5.3;8.5.3. Principles of waste treatment via MFCs;275
9.1.5.4;8.5.4. Oxidation reduction reactions in MFCs;275
9.1.5.5;8.5.5. Critical operating parameters and components in MFCs;276
9.1.5.5.1;8.5.5.1. Critical operating parameters;276
9.1.5.5.2;8.5.5.2. Membrane versus membraneless MFCs;277
9.1.6;8.6. Organic removal in MFCs;277
9.1.6.1;8.6.1. MFCs with synthetic wastewater as substrates;277
9.1.6.2;8.6.2. MFCs with actual wastewater as substrates;278
9.1.6.3;8.6.3. Effect of process parameters;281
9.1.6.4;8.6.4. MFC integration with other processes;282
9.1.7;8.7. Algae biocathode for MFCs;283
9.1.8;8.8. Nitrogen removal in MFCs;285
9.1.9;8.9. Phosphorus removal in MFCs;288
9.1.10;8.10. Metals removal in MFCs;289
9.1.11;8.11. Source separation;291
9.1.11.1;8.11.1. Urine as energy source;291
9.1.11.2;8.11.2. Energy from human feces;292
9.1.12;8.12. Conclusions;292
9.1.13;Acknowledgments;293
9.1.14;References;293
9.2;Chapter 9: Microbial electrolysis cells for hydrogen production;304
9.2.1;9.1. Introduction;304
9.2.2;9.2. Advantages;306
9.2.3;9.3. Disadvantages;307
9.2.4;9.4. Role in the hydrogen economy;307
9.2.5;9.5. How to characterize an MEC;308
9.2.6;9.6. Rhetoric to reality?;312
9.2.7;9.7. Problems;329
9.2.8;9.8. Beyond hydrogen;331
9.2.9;9.9. Prospects for deployment of MEC;331
9.2.10;9.10. Conclusions: How to make MECs happen?;332
9.2.11;Further reading;333
9.2.12;References;333
9.3;Chapter 10: Resource recovery with microbial electrochemical systems;338
9.3.1;10.1. Introduction;338
9.3.2;10.2. Metal recovery;339
9.3.2.1;10.2.1. BES for metal recovery with abiotic cathode;340
9.3.2.2;10.2.2. Metal recovery with bioelectrodes;342
9.3.3;10.3. Nutrients removal and recovery;345
9.3.3.1;10.3.1. Nitrogen recovery with BES;346
9.3.3.2;10.3.2. Phosphorous removal and recovery;348
9.3.4;10.4. Converting CO2 to valuable chemicals;349
9.3.4.1;10.4.1. Electrochemical reduction of CO2 using BES;349
9.3.4.2;10.4.2. MES converting CO2 to valuable chemicals;351
9.3.5;10.5. Prospective;351
9.3.6;References;352
9.4;Chapter 11: Use of microbial fuel cells in sensors;358
9.4.1;11.1. An introduction to biosensors;358
9.4.2;11.2. Microbial biosensors;358
9.4.3;11.3. The use of microbial fuel cells as electrochemical sensor;359
9.4.4;11.4. Operation of the MFC sensor;360
9.4.5;11.5. MFC sensor design;363
9.4.6;11.6. MFCs as BOD sensors;364
9.4.7;11.7. Detection of toxicants in water by MFCs;368
9.4.8;11.8. Conclusions;370
9.4.9;References;370
9.5;Chapter 12: The practical implementation of microbial fuel cell technology;374
9.5.1;12.1. Introduction;374
9.5.2;12.2. Direct use of microbial fuel cells;375
9.5.2.1;12.2.1. Direct use of voltage behaviour: Sensing light patterns;375
9.5.2.2;12.2.2. Direct use of power;377
9.5.3;12.3. Implementing energy harvesting;380
9.5.3.1;12.3.1. Digital wristwatch;380
9.5.3.2;12.3.2. Mobile phone charging;381
9.5.3.3;12.3.3. Freshening the air;383
9.5.3.4;12.3.4. Process and bioprocess control;383
9.5.3.5;12.3.5. An array of LED lights powered by MFCs;386
9.5.3.6;12.3.6. Urine-powered smoke alarms;387
9.5.3.7;12.3.7. Urine-activated distress signal;388
9.5.4;12.4. Field trials;389
9.5.4.1;12.4.1. Wastewater treatment plant;389
9.5.4.2;12.4.2. Fuelled by urine;393
9.5.5;12.5. Conclusions;395
9.5.6;References;395
10;Index;398
11;Back Cover;411