Scott / Yu | Microbial Electrochemical and Fuel Cells | E-Book | sack.de
E-Book

E-Book, Englisch, 410 Seiten

Scott / Yu Microbial Electrochemical and Fuel Cells

Fundamentals and Applications

E-Book, Englisch, 410 Seiten

ISBN: 978-1-78242-396-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Microbial Electrochemical and Fuel Cells: Fundamentals and Applications contains the most updated information on bio-electrical systems and their ability to drive an electrical current by mimicking bacterial interactions found in nature to produce a small amount of power. One of the most promising features of the microbial fuel cell is its application to generate power from wastewater, and its use in the treatment of water to remove contaminants, making it a very sustainable source of power generation that can feasibly find application in rural areas where providing more conventional sources of power is often difficult. The book explores, in detail, both the technical aspects and applications of this technology, and was written by an international team of experts in the field who provide an introduction to microbial fuel cells that looks at their electrochemical principles and mechanisms, explains the materials that can be used for the various sections of the fuel cells, including cathode and anode materials, and provides key analysis of microbial fuel cell performance looking at their usage in hydrogen production, waste treatment, and sensors, amongst other applications. - Includes coverage of the types and principles of electrochemical cells - Provides information on the construction of fuel cells and appropriate materials - Presents the latest on this renewable source of energy and the process for the treatment of waste water
Scott / Yu Microbial Electrochemical and Fuel Cells jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Microbial Electrochemical and Fuel Cells: Fundamentals and Applications;4
3;Copyright;5
4;Contents;6
5;Contributors;10
6;Woodhead Publishing Series in Energy;12
7;Part One: The workings of microbial fuel cells;18
7.1;Chapter 1: An introduction to microbial fuel cells;20
7.1.1;1.1. Introduction;20
7.1.2;1.2. Fuel cells;21
7.1.2.1;1.2.1. Cell voltage;22
7.1.2.2;1.2.2. Mass transport and concentration effects;24
7.1.2.3;1.2.3. Figures of merit;25
7.1.3;1.3. Biological FCs;26
7.1.3.1;1.3.1. Types of biological FCs;27
7.1.4;1.4. The MFC;28
7.1.4.1;1.4.1. Anode microbial behavior;29
7.1.4.2;1.4.2. MFCs without mediators;31
7.1.4.2.1;1.4.2.1. Performance indicators;31
7.1.4.3;1.4.3. MFC bacteria;34
7.1.4.4;1.4.4. MFC materials and operating conditions;35
7.1.4.5;1.4.5. Applications of MFCs;38
7.1.5;1.5. Biological enzyme FC;41
7.1.6;1.6. Conclusions;42
7.1.7;References;43
7.2;Chapter 2: Electrochemical principles and characterization of bioelectrochemical systems;46
7.2.1;2.1. Introduction;46
7.2.2;2.2. Electrochemical principles;47
7.2.2.1;2.2.1. Electrochemical thermodynamics and cell potential;47
7.2.2.2;2.2.2. Electrochemical kinetics;52
7.2.2.2.1;2.2.2.1. Electrochemical reaction model of kinetics;52
7.2.2.3;2.2.3. Mass transport and electrochemical reactions;56
7.2.3;2.3. Voltammetric electrochemical methods;58
7.2.3.1;2.3.1. Linear sweep voltammetry;59
7.2.3.2;2.3.2. Cyclic voltammetry;60
7.2.3.3;2.3.3. CV for the study of microbial electron transfer;62
7.2.3.4;2.3.4. Voltammetry in the presence of donor substrates;63
7.2.4;2.4. Rotating disk and ring-disk electrodes;66
7.2.4.1;2.4.1. Rotating ring-disk electrode;68
7.2.4.2;2.4.2. RDE and RRDE used in biological fuel cells;69
7.2.5;2.5. Electrochemical impedance spectroscopy;69
7.2.5.1;2.5.1. Polarization resistance;72
7.2.5.2;2.5.2. Warburg impedance;74
7.2.5.2.1;2.5.2.1. EIS for MFCs;75
7.2.6;2.6. Chronoamperometry;76
7.2.7;2.7. Square wave voltammetry;78
7.2.8;2.8. Differential pulse voltammetry;79
7.2.9;2.9. Other techniques;79
7.2.10;References;80
7.3;Chapter 3: Electron transfer mechanisms in biofilms;84
7.3.1;3.1. Introduction;84
7.3.2;3.2. Mechanisms for delivering electrons to an anode;90
7.3.2.1;3.2.1. Direct electron transfer in biofilms on anodes;91
7.3.2.2;3.2.2. Mediated electron transfer;96
7.3.2.2.1;3.2.2.1. Self-secreted mediators;97
7.3.2.2.2;3.2.2.2. Cell membrane modifications to enhance electron transfer;98
7.3.3;3.3. Mechanisms for electron uptake from cathodes;99
7.3.3.1;3.3.1. Extracellular electron uptake mechanisms of the model electrogens G. sulfurreducens and S. oneidensis;101
7.3.3.2;3.3.2. Extracellular electron uptake mechanisms of oxygen- and nitrate-reducing bacteria;102
7.3.3.2.1;3.3.2.1. Oxygen-reducing bacteria on cathodes;102
7.3.3.2.2;3.3.2.2. Nitrate-, nitrite-, and nitrous oxide-removing bacteria on cathodes;105
7.3.3.3;3.3.3. Extracellular electron uptake mechanisms of hydrogen-producing, methanogenic, and acetogenic microorganisms;105
7.3.3.3.1;3.3.3.1. Hydrogen-producing bacteria;105
7.3.3.3.2;3.3.3.2. Methanogenic archaea;106
7.3.3.3.3;3.3.3.3. Acetogenic bacteria;108
7.3.4;3.4. EET between microorganisms;109
7.3.4.1;3.4.1. Interspecies electron transfer;109
7.3.4.2;3.4.2. Electron transfer along ``cable´´ bacteria;112
7.3.5;3.5. Future trends and research needs;113
7.3.6;3.6. Conclusion;115
7.3.7;Acknowledgments;116
7.3.8;References;116
8;Part Two: Materials for microbial fuel cells and reactor design;132
8.1;Chapter 4: Anode materials for microbial fuel cells;134
8.1.1;4.1. Introduction;134
8.1.2;4.2. Anode materials;135
8.1.2.1;4.2.1. Carbon materials;135
8.1.2.2;4.2.2. Metal materials;138
8.1.2.3;4.2.3. Composite materials;140
8.1.2.4;4.2.4. Three-dimensional macroporous-based anode;141
8.1.3;4.3. Surface modification of MFC anode materials;142
8.1.3.1;4.3.1. Surface methods for anode modification;142
8.1.3.2;4.3.2. Anode modification with nanomaterials;145
8.1.3.2.1;4.3.2.1. Anode modification with carbon nanomaterials;145
8.1.3.2.2;4.3.2.2. Anode modification with metal or metal oxide;150
8.1.3.2.3;4.3.2.3. Anode modification with polymers;152
8.1.3.2.4;4.3.2.4. Anode modification with composite materials;155
8.1.4;4.4. Conclusions and future perspective;161
8.1.5;References;163
8.2;Chapter 5: Membranes and separators for microbial fuel cells;170
8.2.1;5.1. Introduction;170
8.2.2;5.2. Cell separators;172
8.2.2.1;5.2.1. Diaphragms and porous polymer membranes;172
8.2.2.2;5.2.2. Semipermeable membranes: ion-exchange membranes;173
8.2.3;5.3. Transport processes in membranes and diaphragms;175
8.2.3.1;5.3.1. Ion transport processes;175
8.2.3.2;5.3.2. Ion-exchange membranes and the transport of ions;176
8.2.4;5.4. Membranes for microbial fuel cells;178
8.2.4.1;5.4.1. Ion-exchange membranes;178
8.2.4.1.1;5.4.1.1. Cation-exchange membranes;178
8.2.4.1.2;5.4.1.2. Anion-exchange membranes;182
8.2.4.2;5.4.2. Membrane requirements in MFCs;185
8.2.4.3;5.4.3. Ion and mass transfer processes across ion-exchange membranes in MFCs;185
8.2.4.3.1;5.4.3.1. Cation transport;186
8.2.4.3.2;5.4.3.2. Anion transfer;187
8.2.4.4;5.4.4. Porous separators;189
8.2.4.5;5.4.5. Membrane electrode assemblies;190
8.2.5;5.5. Future trends;192
8.2.6;References;193
8.3;Chapter 6: Cathodes for microbial fuel cells;196
8.3.1;6.1. Introduction;196
8.3.2;6.2. Redox reactions for MFCs;196
8.3.3;6.3. The oxygen reduction mechanism;200
8.3.3.1;6.3.1. ORR in metal electrodes;201
8.3.3.2;6.3.2. ORR at non-metal electrodes;205
8.3.3.2.1;6.3.2.1. Graphite and carbon;205
8.3.3.2.2;6.3.2.2. Carbon nanotubes;205
8.3.4;6.4. Hydrogen evolution mechanism;206
8.3.5;6.5. ORR cathode configuration in MFC;209
8.3.6;6.6. Non-precious metal cathodes;210
8.3.6.1;6.6.1. Cathodic materials and composites;210
8.3.6.2;6.6.2. Cathodic configurations;213
8.3.6.2.1;6.6.2.1. Plane cathodes;213
8.3.6.2.2;6.6.2.2. Packed cathodes;213
8.3.6.2.3;6.6.2.3. Tubular cathodes;213
8.3.6.2.4;6.6.2.4. Brush cathodes;214
8.3.6.3;6.6.3. Cathodic treatments;214
8.3.6.3.1;6.6.3.1. Cathodic coating;214
8.3.6.3.2;6.6.3.2. Cathodic surface treatment;215
8.3.7;6.7. Enzymatic cathodes;215
8.3.7.1;6.7.1. Typical enzymes at cathode;216
8.3.7.2;6.7.2. Major applications;217
8.3.7.2.1;6.7.2.1. Treatment;220
8.3.7.2.2;6.7.2.2. Product synthesis;220
8.3.7.3;6.7.3. Major challenges;221
8.3.8;6.8. Future trends;222
8.3.9;Acknowledgment;222
8.3.10;References;223
8.4;Chapter 7: Reactor design and scale-up;232
8.4.1;7.1. Introduction;232
8.4.2;7.2. Performance indicators for MFCs;233
8.4.2.1;7.2.1. Electrochemical performance indicators;234
8.4.2.2;7.2.2. System performance indicators;236
8.4.3;7.3. What governs the performance of MFCs;239
8.4.4;7.4. Determining the performance of MFCs;241
8.4.5;7.5. MFC architectures;245
8.4.6;7.6. Connectivity and control mechanisms;247
8.4.6.1;7.6.1. MFC connectivity and voltage reversal;248
8.4.7;7.7. MFC scale-up, application, and integration;252
8.4.8;7.8. Future trends;254
8.4.9;References;256
9;Part Three: Applications of microbial electrochemical and fuel cells;262
9.1;Chapter 8: Microbial fuel cells for wastewater treatment and energy generation;264
9.1.1;8.1. Wastewater treatment;264
9.1.2;8.2. Wastewater-energy-environment nexus;264
9.1.3;8.3. Energy requirements for wastewater treatment;266
9.1.4;8.4. Energy recovery in wastewater treatment systems;268
9.1.4.1;8.4.1. Energy recovery from wastewater sludge;269
9.1.4.1.1;8.4.1.1. Anaerobic digestion;269
9.1.4.1.2;8.4.1.2. Thermochemical processes;270
9.1.4.1.3;8.4.1.3. Other energy recovery options;271
9.1.5;8.5. Microbial fuel cells;271
9.1.5.1;8.5.1. Advantages of MFCs over other available options;273
9.1.5.2;8.5.2. Higher energy recovery via MFCs (energy recovery options from wastewater);274
9.1.5.3;8.5.3. Principles of waste treatment via MFCs;275
9.1.5.4;8.5.4. Oxidation reduction reactions in MFCs;275
9.1.5.5;8.5.5. Critical operating parameters and components in MFCs;276
9.1.5.5.1;8.5.5.1. Critical operating parameters;276
9.1.5.5.2;8.5.5.2. Membrane versus membraneless MFCs;277
9.1.6;8.6. Organic removal in MFCs;277
9.1.6.1;8.6.1. MFCs with synthetic wastewater as substrates;277
9.1.6.2;8.6.2. MFCs with actual wastewater as substrates;278
9.1.6.3;8.6.3. Effect of process parameters;281
9.1.6.4;8.6.4. MFC integration with other processes;282
9.1.7;8.7. Algae biocathode for MFCs;283
9.1.8;8.8. Nitrogen removal in MFCs;285
9.1.9;8.9. Phosphorus removal in MFCs;288
9.1.10;8.10. Metals removal in MFCs;289
9.1.11;8.11. Source separation;291
9.1.11.1;8.11.1. Urine as energy source;291
9.1.11.2;8.11.2. Energy from human feces;292
9.1.12;8.12. Conclusions;292
9.1.13;Acknowledgments;293
9.1.14;References;293
9.2;Chapter 9: Microbial electrolysis cells for hydrogen production;304
9.2.1;9.1. Introduction;304
9.2.2;9.2. Advantages;306
9.2.3;9.3. Disadvantages;307
9.2.4;9.4. Role in the hydrogen economy;307
9.2.5;9.5. How to characterize an MEC;308
9.2.6;9.6. Rhetoric to reality?;312
9.2.7;9.7. Problems;329
9.2.8;9.8. Beyond hydrogen;331
9.2.9;9.9. Prospects for deployment of MEC;331
9.2.10;9.10. Conclusions: How to make MECs happen?;332
9.2.11;Further reading;333
9.2.12;References;333
9.3;Chapter 10: Resource recovery with microbial electrochemical systems;338
9.3.1;10.1. Introduction;338
9.3.2;10.2. Metal recovery;339
9.3.2.1;10.2.1. BES for metal recovery with abiotic cathode;340
9.3.2.2;10.2.2. Metal recovery with bioelectrodes;342
9.3.3;10.3. Nutrients removal and recovery;345
9.3.3.1;10.3.1. Nitrogen recovery with BES;346
9.3.3.2;10.3.2. Phosphorous removal and recovery;348
9.3.4;10.4. Converting CO2 to valuable chemicals;349
9.3.4.1;10.4.1. Electrochemical reduction of CO2 using BES;349
9.3.4.2;10.4.2. MES converting CO2 to valuable chemicals;351
9.3.5;10.5. Prospective;351
9.3.6;References;352
9.4;Chapter 11: Use of microbial fuel cells in sensors;358
9.4.1;11.1. An introduction to biosensors;358
9.4.2;11.2. Microbial biosensors;358
9.4.3;11.3. The use of microbial fuel cells as electrochemical sensor;359
9.4.4;11.4. Operation of the MFC sensor;360
9.4.5;11.5. MFC sensor design;363
9.4.6;11.6. MFCs as BOD sensors;364
9.4.7;11.7. Detection of toxicants in water by MFCs;368
9.4.8;11.8. Conclusions;370
9.4.9;References;370
9.5;Chapter 12: The practical implementation of microbial fuel cell technology;374
9.5.1;12.1. Introduction;374
9.5.2;12.2. Direct use of microbial fuel cells;375
9.5.2.1;12.2.1. Direct use of voltage behaviour: Sensing light patterns;375
9.5.2.2;12.2.2. Direct use of power;377
9.5.3;12.3. Implementing energy harvesting;380
9.5.3.1;12.3.1. Digital wristwatch;380
9.5.3.2;12.3.2. Mobile phone charging;381
9.5.3.3;12.3.3. Freshening the air;383
9.5.3.4;12.3.4. Process and bioprocess control;383
9.5.3.5;12.3.5. An array of LED lights powered by MFCs;386
9.5.3.6;12.3.6. Urine-powered smoke alarms;387
9.5.3.7;12.3.7. Urine-activated distress signal;388
9.5.4;12.4. Field trials;389
9.5.4.1;12.4.1. Wastewater treatment plant;389
9.5.4.2;12.4.2. Fuelled by urine;393
9.5.5;12.5. Conclusions;395
9.5.6;References;395
10;Index;398
11;Back Cover;411


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.