Schlögl Chemical Energy Storage
1. Auflage 2012
ISBN: 978-3-11-026632-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 499 Seiten
Reihe: De Gruyter Textbook
ISBN: 978-3-11-026632-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Chemists, Materials Scientists, Physicists, Chemical Engineers, Biotechnologysts, Students; Academic Libraries
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Author Index;15
2;1.1 The Solar Refinery;21
2.1;1.1.1 Introduction;21
2.2;1.1.2 The Role of Chemistry in the Energy Challenge;25
2.3;1.1.3 Chemical Reactions and Catalysis;27
2.4;1.1.4 The Design of Catalysts and Processes;36
2.5;1.1.5 The Biological Origin of Our Present Energy System;37
2.6;1.1.6 Chemical Energy Storage: One Long-Term Solution;40
2.7;1.1.7 References;50
3;1.2 Energy Storage Strategies;55
3.1;1.2.1 Introduction;55
3.2;1.2.2 General Considerations;55
3.3;1.2.3 Heat (Cold) Storage;57
3.4;1.2.4 Grid-Scale Storage of Electrical Energy;59
3.4.1;1.2.4.1 Storage on the Transmission Grid Scale;60
3.4.2;1.2.4.2 Storage on Distribution and Medium-Voltage Grid Scale;63
3.5;1.2.5 Energy Storage for Mobile Applications;64
3.5.1;1.2.5.1 Chemical Compounds;65
3.5.2;1.2.5.2 Traction Batteries;66
3.6;1.2.6 Systems Considerations;67
4;1.3 Energy and Society: A Practical Guide;69
4.1;1.3.1 Notes;77
4.2;1.3.2 References;77
5;2.1 Biofuels Derived from Renewable Feedstocks;79
5.1;2.1.1 Introduction;79
5.2;2.1.2 Sources of Biomass;79
5.3;2.1.3 Lignocellulose as Feedstock;82
5.4;2.1.4 Bioethanol as Sustainable Biofuel;83
5.5;2.1.5 Biodiesel as Potential Biofuel;86
5.6;2.1.6 Production of Biofuel via Chemical Transformations of Lignocellulose;88
5.7;2.1.7 Controlled Transformations of Carbohydrates into Hydrocarbon Fuels;92
5.8;2.1.8 Controlled Transformations of Carbohydrates into Novel Biofuels;96
5.8.1;2.1.8.1 Transformations Based on LA;97
5.8.2;2.1.8.2 Biofuel Compounds Based on 5-HMF;99
5.9;2.1.9 Controlled Transformations of Lignin into Potential Fuel Compounds;101
5.10;2.1.10 Summary;102
5.11;2.1.11 Acknowledgment;102
5.12;2.1.12 References;102
6;2.2 Biomass Conversion to Chemicals;107
6.1;2.2.1 Introduction;107
6.2;2.2.2 Classification of Biomass;108
6.2.1;2.2.2.1 Lignocellulose;109
6.2.2;2.2.2.2 Lipids;114
6.2.3;2.2.2.3 Proteins;118
6.3;2.2.3 Selected Key Chemicals;118
6.3.1;2.2.3.1 Cellulose;118
6.3.2;2.2.3.2 Glycerol;119
6.4;2.2.4 Technologies and Requirements for Chemical Production from Biomass;123
6.5;2.2.5 Economic Considerations;124
6.6;2.2.6 Outlook;125
6.7;2.2.7 References;125
7;2.3 Thermal Conversion of Biomass;129
7.1;2.3.1 Torrefaction;132
7.2;2.3.2 Pyrolysis;132
7.2.1;2.3.2.1 Introduction;132
7.2.2;2.3.2.2 Pyrolysis Reactors;133
7.2.3;2.3.2.3 Biomass;134
7.2.4;2.3.2.4 Composition of Bio-Oil;134
7.2.5;2.3.2.5 Utilization of Bio-Oil;135
7.2.6;2.3.2.6 Upgrading of Bio-Oil;135
7.3;2.3.3 Gasification;136
7.3.1;2.3.3.1 Introduction;136
7.3.2;2.3.3.2 Gasification Reactors;137
7.3.3;2.3.3.3 Energy in Gasification;138
7.4;2.3.4 Combustion;138
7.4.1;2.3.4.1 Introduction;138
7.4.2;2.3.4.2 Energy in Combustion;139
7.4.3;2.3.4.3 Co-combustion;139
7.5;2.3.5 Summary;140
7.6;2.3.6 References;141
8;2.4 Biomass to Mineralized Carbon: Energy Generation and/or Carbon Sequestration;145
8.1;2.4.1 Introduction;145
8.2;2.4.2 HTC;146
8.2.1;2.4.2.1 HTC of Biomass Waste for Environmentally Friendly Carbon Sequestration;146
8.2.2;2.4.2.2 HTC for “Carbon-Negative Materials”;147
8.3;2.4.3 Mineralized Biomass as Energy Carrier;149
8.3.1;2.4.3.1 “Biocoal” and Its Comparison to Other Biofuels, Biogas and Bioethanol;149
8.3.2;2.4.3.2 Carbon Fuel Cells;152
8.4;2.4.4 Discussion and Conclusion;153
8.5;2.4.5 References;153
9;3.1 Electrochemical Concepts: A Practical Guide;155
9.1;3.1.1 Introduction;155
9.2;3.1.2 Electrodes in Electrolytes;157
9.3;3.1.3 Energetics of Electrode Reactions;158
9.4;3.1.4 The Electrochemical Cell;160
9.4.1;3.1.4.1 The Concept;160
9.4.2;3.1.4.2 Chemical and Electric Energy;162
9.4.3;3.1.4.3 The Maximum Electric Energy Produced and the Equilibrium Cell Voltage;164
9.5;3.1.5 Concentration Dependence of E: The Nernst Equation;165
9.5.1;3.1.5.1 The Nernst Equation;165
9.5.2;3.1.5.2 Concentration Cells;167
9.6;3.1.6 The Temperature Dependence of the Equilibrium Cell Voltage, E;168
9.7;3.1.7 Conclusion;168
9.8;3.1.8 Acknowledgment;169
9.9;3.1.9 References;170
10;3.2 Water-Splitting Conceptual Approach;171
10.1;3.2.1 Introduction;171
10.2;3.2.2 Fundamentals;171
10.3;3.2.3 Standard (Reversible) Hydrogen Electrode;172
10.4;3.2.4 The Cathode Half-Cell Reaction;173
10.5;3.2.5 The Anode Half-Cell Reaction;174
10.5.1;3.2.5.1 Free Energy Diagram;175
10.5.2;3.2.5.2 Tafel Equation and .GOER;176
10.5.3;3.2.5.3 Scaling Relations;178
10.5.4;3.2.5.4 Universal Scaling and Trends in Activity;179
10.6;3.2.6 Conclusion;181
10.7;3.2.7 References;181
11;3.3 Fuel Cells;183
11.1;3.3.1 What Is a Fuel Cell?;184
11.2;3.3.2 Components of a Fuel Cell;185
11.3;3.3.3 Performance Characteristics of a Fuel Cell;190
11.4;3.3.4 The Electrocatalysis of Oxygen Reduction at Fuel Cell Cathodes;193
11.4.1;3.3.4.1 Understanding the Electrode Potential Dependence of the ORR;193
11.4.2;3.3.4.2 Understanding and Predicting Trends in ORR Activity on Transition-Metal Catalysts;194
11.4.3;3.3.4.3 Nanostructured Pt Core-Shell Electrocatalysts for the ORR;197
11.4.4;3.3.4.4 Noble-Metal-Free ORR PEMFC Electrocatalysts;202
11.5;3.3.5 Conclusions;202
11.6;3.3.6 Acknowledgments;203
11.7;3.3.7 References;203
12;3.4 Molecular Concepts of Water Splitting: Nature’s Approach;205
12.1;3.4.1 Introduction;205
12.2;3.4.2 Water Oxidation;207
12.2.1;3.4.2.1 PSII;207
12.2.2;3.4.2.2 Geometric Structure of the WOC;210
12.2.3;3.4.2.3 Electronic Structure of the WOC;212
12.2.4;3.4.2.4 Function of the WOC;214
12.2.5;3.4.2.5 Suggested Mechanisms of O-O Bond Formation;215
12.2.6;3.4.2.6 Summary: Principles of Photosynthetic Water Splitting;217
12.2.7;3.4.2.7 Current Water-Splitting Catalysts;218
12.3;3.4.3 Hydrogen Production and Conversion;219
12.3.1;3.4.3.1 Classification of Hydrogenases;220
12.3.2;3.4.3.2 Structure of [NiFe] and [FeFe] Hydrogenases;220
12.3.3;3.4.3.3 Intermediate States and Reaction Mechanisms;223
12.3.4;3.4.3.4 Oxygen Sensitivity and Tolerance;229
12.3.5;3.4.3.5 Design Principles of Hydrogenases;230
12.3.6;3.4.3.6 Molecular Catalysts for H2 Conversion and Production;231
12.4;3.4.4 Conclusions;233
12.5;3.4.5 Acknowledgments;234
12.6;3.4.6 Notes;234
12.7;3.4.7 References;235
13;3.5 Batteries: Concepts and Systems;245
13.1;3.5.1 Introduction;245
13.2;3.5.2 Secondary Battery Systems;248
13.3;3.5.3 Lithium Batteries;252
13.4;3.5.4 Thermodynamics of Electrochemical Energy Storage;256
13.5;3.5.5 Kinetics of Energy Storage;259
13.6;3.5.6 Materials Optimization: Adjusting Screws;260
13.7;3.5.7 Outlook;264
13.8;3.5.8 Acknowledgments;264
13.9;3.5.9 Note;265
13.10;3.5.10 References;265
14;4.1 Chemical Kinetics: A Practical Guide;269
14.1;4.1.1 Theory;269
14.1.1;4.1.1.1 Introduction;269
14.1.2;4.1.1.2 Course of a Catalytic Reaction;269
14.1.3;4.1.1.3 Reaction Kinetics;271
14.2;4.1.2 Practical Aspects;278
14.2.1;4.1.2.1 Laboratory Reactors;278
14.2.2;4.1.2.2 Preliminary Tests;278
14.2.3;4.1.2.3 Comparative Studies;279
14.2.4;4.1.2.4 Development of Kinetic Models;280
14.3;4.1.3 Examples;284
14.3.1;4.1.3.1 Oxidative Coupling of Methane;284
14.3.2;4.1.3.2 Decomposition of Ammonia;287
14.3.3;4.1.3.3 Slurry Reaction;290
14.4;4.1.4 Notes;293
14.5;4.1.5 Acknowledgment;294
14.6;4.1.6 Abbreviations;294
14.7;4.1.7 References;295
15;4.2 Synthesis of Solid Catalysts;297
15.1;4.2.1 Macroscopic Catalyst Bodies;300
15.2;4.2.2 The Active Phase;305
15.3;4.2.3 Dispersed Surface Species;316
15.4;4.2.4 Final Remarks;320
15.5;4.2.5 Acknowledgments;321
15.6;4.2.6 References;321
16;4.3 In situ Analysis of Heterogeneous Catalysts in Chemical Energy Conversion;331
16.1;4.3.1 Setting the Scene for Catalyst Characterization in Energy-Related Catalysis and Energy Storage;331
16.2;4.3.2 The Bench of Complementary Characterization Methods;332
16.3;4.3.3 Importance of In Situ Studies;334
16.4;4.3.4 In Situ Cell Design: A Challenge between Engineering and Spectroscopy for Dynamic Experiments and Structure Performance Relationships;336
16.5;4.3.5 Case Studies in Gas Phase, Liquid Phase, High Pressure, and Other Demanding Reaction Conditions;338
16.6;4.3.6 Watching Ensembles and Reactors at Work: Spatially Resolved Studies;341
16.7;4.3.7 Conclusions and Outlook;343
16.8;4.3.8 Acknowledgment;344
16.9;4.3.9 References;344
17;4.4 Model Systems in Catalysis for Energy Economy;349
17.1;4.4.1 Introduction;349
17.2;4.4.2 First Case Study: Controlling Nanoparticle Shapes on Nondoped and Doped Oxide Supports;351
17.3;4.4.3 Second Case Study: Preparation of Oxide-Supported Palladium Model Catalysts by Pd Deposition from Solution;356
17.4;4.4.4 Third Case Study: Strong Metal/Support Interaction Effects;360
17.5;4.4.5 Fourth Case Study: Photochemistry at Nanoparticles;364
17.6;4.4.6 Synopsis;368
17.7;4.4.7 References;368
18;4.5 Challenges in Molecular Energy Research;373
18.1;4.5.1 Introduction;373
18.2;4.5.2 Modern Spectroscopy and Quantum Chemistry as a Means to Decipher Reaction Mechanisms;375
18.3;4.5.3 Fundamental Chemistry of Energy Conversion;377
18.3.1;4.5.3.1 Hydrogen Production;377
18.3.2;4.5.3.2 Water Oxidation;380
18.3.3;4.5.3.3 Oxygen Activation;384
18.3.4;4.5.3.4 Methane Oxidation;388
18.3.5;4.5.3.5 Conversion of Dinitrogen to Ammonia;390
18.4;4.5.4 Summary and Outlook;392
18.5;4.5.5 Acknowledgments;393
18.6;4.5.6 References;393
19;5.1 Photoelectrochemical CO2 Activation toward Artificial Leaves;399
19.1;5.1.1 Introduction;399
19.2;5.1.2 Artificial Leaves and PEC CO2 Activation;400
19.3;5.1.3 Fundamentals of Water and CO2 Electrolysis;402
19.4;5.1.4 Designing the Electrocatalytic Cathode for CO2 Reduction;408
19.5;5.1.5 Designing the Photoanode;411
19.6;5.1.6 PEC Cells for CO2 Conversion;415
19.7;5.1.7 Conclusions;417
19.8;5.1.8 References;418
20;5.2 Thermochemical CO2 Activation;421
20.1;5.2.1 Introduction;421
20.2;5.2.2 General Kinetic and Thermodynamic Considerations;422
20.3;5.2.3 Solarthermal Cycles;423
20.3.1;5.2.3.1 General Principles;423
20.3.2;5.2.3.2 Examples;428
20.4;5.2.4 Dry Reforming of Methane;431
20.5;5.2.5 Summary;431
20.6;5.2.6 References;431
21;5.3 Methanol Chemistry;433
21.1;5.3.1 Why Methanol?;433
21.2;5.3.2 Introduction to Methanol Synthesis and Steam Reforming;435
21.3;5.3.3 Today’s Industrial Methanol Synthesis;437
21.4;5.3.4 The Reaction Mechanism of Methanol Synthesis;439
21.5;5.3.5 Methanol Synthesis from CO2: Thermodynamic and Kinetic Considerations;442
21.6;5.3.6 Cu/ZnO-Based Methanol Synthesis Catalysts;446
21.7;5.3.7 Methanol Steam Reforming (MSR)2;450
21.8;5.3.8 Challenges and Perspectives in Catalyst and Process Development for Energy-Related Application of Methanol;453
21.9;5.3.9 Notes;455
21.10;5.3.10 References;455
22;5.4 Synthesis Gas to Hydrogen, Methanol, and Synthetic Fuels;463
22.1;5.4.1 Introduction;463
22.2;5.4.2 Production of Synthesis Gas;463
22.3;5.4.3 Applications of Synthesis Gas: H2 and Methanol;465
22.3.1;5.4.3.1 Syngas to Hydrogen: The WGS Reaction;465
22.3.2;5.4.3.2 Syngas to Methanol;466
22.4;5.4.4 Syngas to Synthetic Fuels: The Fischer-Tropsch Synthesis;466
22.4.1;5.4.4.1 Chemistry and Catalysts;467
22.5;5.4.5 References;475
23;Index;479