Buch, Englisch, 1010 Seiten, Format (B × H): 185 mm x 251 mm, Gewicht: 1781 g
Foundations
Buch, Englisch, 1010 Seiten, Format (B × H): 185 mm x 251 mm, Gewicht: 1781 g
ISBN: 978-1-009-21812-2
Verlag: Cambridge University Press
This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This first volume, Foundations, introduces core topics in inference and learning, such as matrix theory, linear algebra, random variables, convex optimization and stochastic optimization, and prepares students for studying their practical application in later volumes. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 600 end-of-chapter problems (including solutions for instructors), 100 figures, 180 solved examples, datasets and downloadable Matlab code. Supported by sister volumes Inference and Learning, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, statistical analysis, data science and inference.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Contents; Preface; Notation; 1. Matrix theory; 2. Vector differentiation; 3. Random variables; 4. Gaussian distribution; 5. Exponential distributions; 6. Entropy and divergence; 7. Random processes; 8. Convex functions; 9. Convex optimization; 10. Lipschitz conditions; 11. Proximal operator; 12. Gradient descent method; 13. Conjugate gradient method; 14. Subgradient method; 15. Proximal and mirror descent methods; 16. Stochastic optimization; 17. Adaptive gradient methods; 18. Gradient noise; 19. Convergence analysis I: Stochastic gradient algorithms; 20. Convergence analysis II: Stochasic subgradient algorithms; 21: Convergence analysis III: Stochastic proximal algorithms; 22. Variance-reduced methods I: Uniform sampling; 23. Variance-reduced methods II: Random reshuffling; 24. Nonconvex optimization; 25. Decentralized optimization I: Primal methods; 26: Decentralized optimization II: Primal-dual methods; Author index; Subject index.