E-Book, Englisch, 320 Seiten, E-Book
Saguet Numerical Analysis in Electromagnetics
1. Auflage 2013
ISBN: 978-1-118-61422-8
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
The TLM Method
E-Book, Englisch, 320 Seiten, E-Book
ISBN: 978-1-118-61422-8
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
The aim of this book is to give a broad overview of the TLM(Transmission Line Matrix) method, which is one of the"time-domain numerical methods". These methods arereputed for their significant reliance on computer resources.However, they have the advantage of being highly general.
The TLM method has acquired a reputation for being a powerful andeffective tool by numerous teams and still benefits today fromsignificant theoretical developments. In particular, in recentyears, its ability to simulate various situations with excellentprecision, including complex materials, has beendemonstrated.
Application examples are included in the last two chapters of thebook, enabling the reader to draw conclusions regarding theperformance of the implemented techniques and, at the same time, tovalidate them.
Contents
1. Basis of the TLM Method: the 2D TLM Method.
2. 3D Nodes.
3. Introduction of Discrete Elements and Thin Wires in the TLMMethod.
4. The TLM Method in Matrix Form and the Z Transform.
Appendix A. Development of Maxwell's Equations using the ZTransform with a Variable Mesh.
Appendix B. Treatment of Plasma using the Z Transform for the TLMMethod.
Autoren/Hrsg.
Weitere Infos & Material
Introduction ix
Chapter 1. Basis of the TLM Method: the 2D TLM Method1
1.1. Historical introduction 1
1.2. 2D simulation 5
1.2.1. Parallel node 5
1.2.2. Series node 8
1.2.3. Simulation of inhomogeneous media with losses 9
1.2.4. Scattering matrices 11
1.2.5. Boundary conditions 14
1.2.6. Dielectric interface passage conditions 15
1.2.7. Dispersion of 2D nodes. 17
1.3. The TLM process 22
1.3.1. Basic algorithm 22
1.3.2. Excitation 23
1.3.3. Output signal processing 24
Chapter 2. 3D Nodes 29
2.1. Historical development 29
2.1.1. Distributed nodes 29
2.1.2. Asymmetrical condensed node (ACN) 30
2.1.3. The symmetrical condensed node (SCN) 31
2.1.4. Other types of nodes 33
2.2. The generalized condensed node 37
2.2.1. General description 37
2.2.2. Derivation of 3D TLM nodes 41
2.2.3. Scattering matrices 46
2.3. Time step. 54
2.4. Dispersion of 3D nodes. 55
2.4.1. Theoretical study in simple cases 56
2.4.2. Case of inhomogeneous media. 60
2.5. Absorbing walls 60
2.5.1. Matched impedance 61
2.5.2. Segmentation techniques 62
2.5.3. Perfectly matched layers 62
2.5.4. Optimization of the PML layer profile 65
2.5.5. Anisotropic and dispersive layers 67
2.5.6. Conclusion 70
2.6. Orthogonal curvilinear mesh 70
2.6.1. 3D TLM curvilinear cell. 70
2.6.2. The TLM algorithm 73
2.6.3. Scattering matrices for curvilinear nodes 75
2.6.4. Stability conditions and the time step 78
2.6.5. Validation of the algorithm 79
2.7. Non-Cartesian nodes 81
Chapter 3. Introduction of Discrete Elements and Thin Wiresin the TLM Method 85
3.1. Introduction of discrete elements 85
3.1.1. History of 2D TLM 85
3.1.2. 3D TLM 89
3.1.3. Application example: modeling of a p-n diode 100
3.2. Introduction of thin wires 105
3.2.1. Arbitrarily oriented thin wire model 106
3.2.2. Validation of the arbitrarily oriented thin wire model119
Chapter 4. The TLM Method in Matrix Form and the Z Transform123
4.1. Introduction 123
4.2. Matrix form of Maxwell's equations 124
4.3. Cubic mesh normalized Maxwell's equations 125
4.4. The propagation process 127
4.5. Wave-matter interaction 130
4.6. The normalized parallelepipedic mesh Maxwell's equations133
4.7. Application example: plasma modeling 136
4.7.1. Theoretical model 136
4.7.2. Validation of the TLM simulation 139
4.8. Conclusion 144
APPENDICES 145
Appendix A. Development of Maxwell's Equations using the ZTransform with a Variable Mesh 147
Appendix B. Treatment of Plasma using the Z Transform for theTLM Method 155
Bibliography 161
Index 171