Saddow | Silicon Carbide Biotechnology | E-Book | sack.de
E-Book

E-Book, Englisch, 495 Seiten

Saddow Silicon Carbide Biotechnology

A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications

E-Book, Englisch, 495 Seiten

ISBN: 978-0-12-385907-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Silicon Carbide (SiC) is a wide-band-gap semiconductor biocompatible material that has the potential to advance advanced biomedical applications. SiC devices offer higher power densities and lower energy losses, enabling lighter, more compact and higher efficiency products for biocompatible and long-term in vivo applications ranging from heart stent coatings and bone implant scaffolds to neurological implants and sensors. The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time. For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo. This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions. - Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists - Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials - Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices
Saddow Silicon Carbide Biotechnology jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Silicon Carbide Biotechnology;4
3;Copyright Page;5
4;Contents;8
5;Preface;12
6;Acknowledgments;16
7;1 Silicon Carbide Materials for Biomedical Applications;18
7.1;1.1 Introduction;18
7.2;1.2 Silicon Carbide—Materials Overview;19
7.3;1.3 Silicon Carbide Material Growth and Processing;21
7.3.1;1.3.1 Bulk Growth;22
7.3.2;1.3.2 Thin Films Growth;24
7.3.3;1.3.3 Amorphous SiC coatings;26
7.3.4;1.3.4 SiC Micromachining;27
7.4;1.4 Silicon Carbide as a Biomedical Material;28
7.5;1.5 Summary;29
7.6;Acknowledgments;30
7.7;References;30
8;2 SiC Films and Coatings: Amorphous, Polycrystalline, and Single Crystal Forms;34
8.1;2.1 Introduction;34
8.2;2.2 SiC CVD Introduction;35
8.2.1;2.2.1 CVD Reactor Overview;37
8.3;2.3 Amorphous Silicon Carbide, a-Sic;39
8.3.1;2.3.1 Chemical Vapor Deposition of a-SiC;40
8.3.2;2.3.2 Pulsed Laser Deposition (PLD);40
8.3.3;2.3.3 Sputtering;42
8.3.4;2.3.4 Material Properties of a-SiC;43
8.3.4.1;2.3.4.1 Biocompatability of a-SiC;44
8.4;2.4 Polycrystalline SiC Films;45
8.4.1;2.4.1 Poly-SiC Growth on a Polysilicon-on-Oxide Substrate;46
8.5;2.5 Single-Crystalline SiC Films;49
8.5.1;2.5.1 Homoepitaxial Films;50
8.5.2;2.5.2 Heteroepitaxial Films on Si;53
8.5.2.1;2.5.2.1 HC1 Growth Additive;57
8.5.3;2.5.3 3C-SiC Growth on a-SiC;59
8.6;2.6 3C-SiC Heteroepitaxial Growth on Novel Substrates;60
8.6.1;2.6.1 Growth on SOI;61
8.6.2;2.6.2 Growth on Porous Si and SiC;64
8.6.3;2.6.3 Growth on Nano-textured Si Substrates;67
8.6.4;2.6.4 Growth on Novel Buffer Layers;69
8.7;2.7 Summary;72
8.8;Acknowledgments;72
8.9;References;73
9;3 Multifunctional SiC Surfaces: From Passivation to Biofunctionalization;80
9.1;3.1 Introduction;80
9.2;3.2 Surface Terminations;82
9.2.1;3.2.1 Controlled Surface Terminations;85
9.2.2;3.2.2 Hydroxylated Surfaces;87
9.2.3;3.2.3 Hydrogen Termination;92
9.2.4;3.2.4 Chlorine Termination;94
9.3;3.3 Organic Surface Modification via Self-Assembly Techniques;98
9.3.1;3.3.1 Silanization;99
9.3.2;3.3.2 Alkylation and Alkoxylation;100
9.3.3;3.3.3 SiC Functionalization;101
9.3.3.1;3.3.3.1 Silanized SiC;103
9.3.3.2;3.3.3.2 Alkoxylated SiC;110
9.4;3.4 Polymer Brushes;112
9.4.1;3.4.1 Fundamentals of Polymer Brushes: Properties and Applications;112
9.4.2;3.4.2 Homogeneous Polymer Brushes on SiC;117
9.4.3;3.4.3 Structured Polymer Brushes on SiC;119
9.5;3.5 Increased Cell Proliferation on SiC-Modified Surfaces;123
9.5.1;3.5.1.1 Cell Culture;124
9.5.2;3.5.2 Cell Morphology via AFM;124
9.5.3;3.5.3 Cell Viability via 96-h MTT Assays;126
9.5.4;3.5.4 Discussion;128
9.6;3.6 Conclusion;129
9.7;Acknowledgments;129
9.8;References;129
10;4 SiC In Vitro Biocompatibility: Epidermal and Connective Tissue Cells;136
10.1;4.1 Introduction;136
10.2;4.2 Cell Cultures on Single-Crystal SiC Surfaces;138
10.2.1;4.2.1 Materials, Processing, and Test Methods;139
10.2.2;4.2.2 SiC In Vitro Biocompatibility Assessment;141
10.2.3;4.2.3 Cell Protrusions on SiC and Si Substrates;146
10.3;4.3 Influence of Surface Properties on Cell Adhesion and Proliferation;148
10.3.1;4.3.1 Surface Chemistry and Wettability of SiC and Si Substrates;148
10.3.2;4.3.2 Influence of SiC Surface Topography on Cell Adhesion and Proliferation;151
10.3.3;4.3.3 Influence of SiC Surface Chemistry on Cell Adhesion and Proliferation;153
10.4;4.4 Cleaning of SiC Surfaces for Bioapplications: RCA versus Piranha;158
10.4.1;4.4.1 Effect of RCA and Piranha on Semiconductor Surface Morphology and Chemistry;158
10.4.2;4.4.2 Bioresidue on RCA-Cleaned Surfaces;159
10.4.3;4.4.3 Effect of Repeated Piranha Cleans on Chemistry, Wettability, and Cell Proliferation;162
10.5;4.5 Summary;164
10.6;Acknowledgments;166
10.7;References;166
11;5 Hemocompatibility Assessment of 3C-SiC for Cardiovascular Applications;170
11.1;5.1 Introduction;170
11.1.1;5.1.1 Thrombus Formation;173
11.1.2;5.1.2 SiC as a Promising Material for Biosensing Applications in the Bloodstream;177
11.2;5.2 Biocompatibility of Materials;178
11.2.1;5.2.1 Biocompatibility of Materials with Blood: Hemocompatibility;179
11.2.2;5.2.2 Standard ISO 10993-4;180
11.2.3;5.2.3 Perspectives in Hemocompatibility Assessment;182
11.2.4;5.2.4 The Platelet Adhesion and Activation Assessment Perspective;183
11.2.5;5.2.5 The Protein Adsorption Assessment Perspective;184
11.2.6;5.2.6 The Endothelial Cell Proliferation Perspective;185
11.3;5.3 Platelet Adhesion and Activation;185
11.3.1;5.3.1 Platelet Adhesion and Activation Assessment Protocol;188
11.3.2;5.3.2 The Impact of Surface Roughness;195
11.4;5.4 Protein Adsorption to Surfaces;200
11.4.1;5.4.1 The QCM Technology;202
11.4.2;5.4.2 Protein Adsorption Assessment Using QCM-D;203
11.4.3;5.4.3 Results;205
11.5;5.5 Microvascular Endothelial Cell Proliferation on Semiconductor Substrates;208
11.5.1;5.5.1 Microvascular Endothelial Cells and the Vessel Internal Lumen;208
11.5.2;5.5.2 Cell Proliferation in vitro: Experimental Protocol;211
11.5.3;5.5.3 MTT Assay and Fluorescent Microscopy Results;213
11.6;5.6 Conclusion;217
11.6.1;5.6.1 3C-SiC versus Si;217
11.6.2;5.6.2 Future Work;219
11.7;Acknowledgments;221
11.8;References;221
12;6 Biocompatibility of SiC for Neurological Applications;226
12.1;6.1 Introduction;226
12.2;6.2 The Basic Central Nervous System;227
12.2.1;6.2.1 The Neuron Cell;229
12.2.2;6.2.2 The Glia Cell;231
12.2.3;6.2.3 Reactive Gliosis;233
12.3;6.3 In Vitro Foreign Material and Living Cell Surface Interaction;234
12.3.1;6.3.1 SiC Biocompatibility;235
12.3.2;6.3.2 Samples and Cleaning Protocols;237
12.3.3;6.3.3 Cell Culture and MTT Assay Protocol;238
12.3.4;6.3.4 AFM Methodology for Cell Morphology and Substrate Permissiveness;239
12.3.5;6.3.5 Experimental Results;241
12.3.5.1;6.3.5.1 H4 Cells: AFM Study;242
12.3.5.2;6.3.5.2 PC12 cells: AFM study;245
12.3.6;6.3.6 Discussion of Results;248
12.4;6.4 Mouse Primary Cortical Neurons on 3C-SiC;255
12.4.1;6.4.1 Cortical Cell Biocompatibility Testing;256
12.5;6.5 In Vivo Neuronal Tissue Reaction to Cubic Silicon Carbide;259
12.5.1;6.5.1 Materials and Experimental Development;260
12.5.2;6.5.2 3C-SiC/Si(100) In Vivo Implantation;261
12.5.3;6.5.3 Experimental Results;262
12.5.4;6.5.4 In vivo Discussion and Conclusion;264
12.6;6.6 “Michigan Probe” Style 3C-SiC Biocompatibility Investigation Device;265
12.7;6.7 Conclusion;268
12.8;Acknowledgments;269
12.9;References;269
12.10;Bibliography;273
13;7 SiC for Brain–Machine Interface (BMI);274
13.1;7.1 Introduction;274
13.2;7.2 Theory of Bioelectricity;278
13.2.1;7.2.1 The Neuronal Action Potential;279
13.2.2;7.2.2 Microelectrode Device Interaction;282
13.2.3;7.2.3 Field-Effect Device Interaction;285
13.3;7.3 The Brain–Machine Interface;287
13.3.1;7.3.1 Noninvasive Neuronal Prosthetics;287
13.3.2;7.3.2 Invasive Implantable Prosthetics;289
13.4;7.4 Implantable Neural Prosthetics and the Immune System Interaction;293
13.5;7.5 Silicon Carbide Neural Activation Device (SiC-NAD);296
13.5.1;7.5.1 NAD0 Activation of a Neural Action Potential;297
13.6;7.6 Neural Interface Signal Production, Reception and Processing;300
13.6.1;7.6.1 Improving the NAD System;306
13.6.2;7.6.2 NAD Stimulation Electronics;312
13.6.3;7.6.3 NAD Recording Electronics;314
13.7;7.7 Conclusion;316
13.8;Acknowledgments;318
13.9;References;318
14;8 Porous SiC Microdialysis Technology;326
14.1;8.1 Introduction to Microdialysis Principles;326
14.1.1;8.1.1 Common Use of Microdialysis for Research and Application;330
14.1.1.1;8.1.1.1 Posttrauma Brain Monitoring;330
14.1.1.2;8.1.1.2 Postsurgery Heart Monitoring;331
14.1.1.3;8.1.1.3 Glucose Supervision;331
14.1.1.4;8.1.1.4 Drug Research;331
14.2;8.2 Membrane Types;331
14.2.1;8.2.1 Porous Polymer Membranes;332
14.2.2;8.2.2 Porous Silicon Membranes;332
14.2.3;8.2.3 Porous Silicon Carbide Membranes;334
14.2.4;8.2.4 P- and N-Type Electrochemically Etched SiC for Microdialysis Membranes;337
14.2.5;8.2.5 Columnar Porous Silicon Carbide Membranes;343
14.3;8.3 Summary;346
14.4;Acknowledgments;347
14.5;References;347
15;9 Biocompatible Sol–Gel Based Nanostructured Hydroxyapatite Coatings on Nano-porous SiC;350
15.1;9.1 Introduction;350
15.2;9.2 Porous SiC;353
15.2.1;9.2.1 Commercially Obtained Porous SiC;353
15.2.2;9.2.2 Synthesis of np-SiC with Controlled Porosity;353
15.2.3;9.2.3 Materials Synthesis;354
15.2.4;9.2.4 Materials Characterization;354
15.2.5;9.2.5 Biological Activity Study: Cell Culture;355
15.2.6;9.2.6 Fluorescence Microscopy;355
15.2.7;9.2.7 Scanning Electron Microscopy of Cell Growth on HA-Coated np-SiC Chips;356
15.3;9.3 Results and Discussion;356
15.3.1;9.3.1 HA Coating on ~10-nm np-SiC;356
15.3.2;9.3.2 MG-63 Cell Growth on Various Thicknesses of HA Coated on ~10-nm np-SiC;360
15.3.3;9.3.3 Attachment of HA Coating to ~10-nm np-SiC during MG-63 Cell Culture;361
15.3.4;9.3.4 HA Coating on Custom-Prepared ~16- and ~50-nm np-SiC;362
15.3.5;9.3.5 Cell Attachment and Viability of HA coated on Custom-Prepared ~16- and ~50-nm np-SiC;362
15.4;9.4 Conclusion;364
15.5;Acknowledgments;364
15.6;References;365
16;10 Silicon Carbide BioMEMS;368
16.1;10.1 Introduction;368
16.1.1;10.1.1 Silicon Carbide and its Connection to MEMS;368
16.1.2;10.1.2 Surface Micromachining of SiC;369
16.1.3;10.1.3 Bulk Micromachining of SiC;376
16.1.4;10.1.4 Micromolding of SiC;379
16.1.5;10.1.5 Wafer Bonding of SiC;379
16.2;10.2 6H-SiC-Based BioMEMS;380
16.2.1;10.2.1 Porous SiC Membranes for Biofiltration;380
16.2.2;10.2.2 6H-SiC Microprobes for In Vivo Biosensing;380
16.2.3;10.2.3 6H-SiC Microelectrode Arrays for In Vitro Biosensing;382
16.3;10.3 3C-SiC-Based BioMEMS;382
16.3.1;10.3.1 3C-SiC as a Material for BioMEMS;382
16.3.2;10.3.2 3C-SiC MEMS for Biomedical Imaging;383
16.3.3;10.3.3 3C-SiC NEMS for Biosensing;384
16.4;10.4 Amorphous-SiC-Based BioMEMS;385
16.4.1;10.4.1 Amorphous-SiC for Implantable BioMEMS;386
16.4.2;10.4.2 Amorphous-SiC Membranes for Microfluidics/Lab-on-a-Chip Applications;388
16.5;10.5 Conclusions;390
16.6;References;390
17;11 SiC as a Biocompatible Marker for Cell Labeling;394
17.1;11.1 Introduction;394
17.2;11.2 Synthesis;397
17.2.1;11.2.1 Bottom-Up Processes;397
17.2.2;11.2.2 Top-Down Processes;397
17.2.2.1;11.2.2.1 Electrochemical Etching;397
17.2.2.2;11.2.2.2 Laser Ablation;399
17.2.3;11.2.3 Conclusion;399
17.3;11.3 Structural and Chemical Properties of SiC Nanoparticles;400
17.3.1;11.3.1 TEM Observations;400
17.3.2;11.3.2 Surface Chemistry;403
17.3.2.1;11.3.2.1 Surface Species;403
17.3.2.2;11.3.2.2 Surface Charges;407
17.4;11.4 Optical Properties;408
17.4.1;11.4.1 Introduction;408
17.4.2;11.4.2 Quantum Confinement versus Surface States as Recombination Mechanisms in 6H-SiC Nanostructures;412
17.4.2.1;11.4.2.1 Introduction;412
17.4.2.2;11.4.2.2 Starting Bulk Material;413
17.4.2.3;11.4.2.3 Freestanding Porous 6H-SiC Layer and Nanopowder;414
17.4.2.4;11.4.2.4 From the Nanopowder to QD Suspension;417
17.4.2.5;11.4.2.5 Evidence of the Quantum Confinement Effect in the QD Suspension;420
17.4.2.6;11.4.2.6 Conclusion;423
17.4.3;11.4.3 Influence of Chemical Environment on 3C-SiC QD Fluorescence;423
17.4.3.1;11.4.3.1 Introduction;423
17.4.3.2;11.4.3.2 Solvent Effect on 3C-SiC QD Fluorescence;424
17.4.3.3;11.4.3.3 Charge Effect on 3C-SiC QD Fluorescence;425
17.4.3.4;11.4.3.4 PL Properties of 3C-SiC QDs from Laser Ablation;428
17.4.4;11.4.4 Conclusion;428
17.5;11.5 Biocompatible Cell Labeling;430
17.5.1;11.5.1 Introduction;430
17.5.2;11.5.2 Evidence of Marking;430
17.5.3;11.5.3 Heterogeneous Marking and Evidence of Penetration into the Cell Nuclei;432
17.5.4;11.5.4 Evidence of Cytocompatibility;436
17.5.5;11.5.5 Conclusion;437
17.6;11.6 Cancer Therapy;437
17.7;11.7 Chapter Summary;441
17.8;References;442
18;12 Carbon Based Materials on SiC for Advanced Biomedical Applications;448
18.1;12.1 Introduction;448
18.2;12.2 Graphene;450
18.2.1;12.2.1 The Promise of Graphene;450
18.2.2;12.2.2 Graphene Synthesis Methods;452
18.2.2.1;12.2.2.1 Chemical and Mechanical Exfoliation of Graphite;452
18.2.2.2;12.2.2.2 Chemical Vapor Deposition;453
18.2.2.3;12.2.2.3 Epitaxial Graphene on SiC;454
18.3;12.3 Pyrolyzed photoresist films (PPF);456
18.3.1;12.3.1 PPF Properties;456
18.3.2;12.3.2 PPF Synthesis on SiC;458
18.4;12.4 Graphene and pyrolyzed photoresist films for biomedical devices;458
18.5;12.5 Biocompatibility of epitaxial graphene on SiC and PPF;464
18.5.1;12.5.1 Sample Preparation Prior to Cell-Surface Interactions;464
18.5.2;12.5.2 Reuse of Epitaxial Graphene on 6H-SiC;467
18.5.3;12.5.3 Cell Morphology Inspection and Cell Viability Analysis;467
18.6;12.6 Conclusions;470
18.7;Acknowledgments;471
18.8;References;472
19;Index;476


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.