A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications
E-Book, Englisch, 495 Seiten
ISBN: 978-0-12-385907-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Silicon Carbide Biotechnology;4
3;Copyright Page;5
4;Contents;8
5;Preface;12
6;Acknowledgments;16
7;1 Silicon Carbide Materials for Biomedical Applications;18
7.1;1.1 Introduction;18
7.2;1.2 Silicon Carbide—Materials Overview;19
7.3;1.3 Silicon Carbide Material Growth and Processing;21
7.3.1;1.3.1 Bulk Growth;22
7.3.2;1.3.2 Thin Films Growth;24
7.3.3;1.3.3 Amorphous SiC coatings;26
7.3.4;1.3.4 SiC Micromachining;27
7.4;1.4 Silicon Carbide as a Biomedical Material;28
7.5;1.5 Summary;29
7.6;Acknowledgments;30
7.7;References;30
8;2 SiC Films and Coatings: Amorphous, Polycrystalline, and Single Crystal Forms;34
8.1;2.1 Introduction;34
8.2;2.2 SiC CVD Introduction;35
8.2.1;2.2.1 CVD Reactor Overview;37
8.3;2.3 Amorphous Silicon Carbide, a-Sic;39
8.3.1;2.3.1 Chemical Vapor Deposition of a-SiC;40
8.3.2;2.3.2 Pulsed Laser Deposition (PLD);40
8.3.3;2.3.3 Sputtering;42
8.3.4;2.3.4 Material Properties of a-SiC;43
8.3.4.1;2.3.4.1 Biocompatability of a-SiC;44
8.4;2.4 Polycrystalline SiC Films;45
8.4.1;2.4.1 Poly-SiC Growth on a Polysilicon-on-Oxide Substrate;46
8.5;2.5 Single-Crystalline SiC Films;49
8.5.1;2.5.1 Homoepitaxial Films;50
8.5.2;2.5.2 Heteroepitaxial Films on Si;53
8.5.2.1;2.5.2.1 HC1 Growth Additive;57
8.5.3;2.5.3 3C-SiC Growth on a-SiC;59
8.6;2.6 3C-SiC Heteroepitaxial Growth on Novel Substrates;60
8.6.1;2.6.1 Growth on SOI;61
8.6.2;2.6.2 Growth on Porous Si and SiC;64
8.6.3;2.6.3 Growth on Nano-textured Si Substrates;67
8.6.4;2.6.4 Growth on Novel Buffer Layers;69
8.7;2.7 Summary;72
8.8;Acknowledgments;72
8.9;References;73
9;3 Multifunctional SiC Surfaces: From Passivation to Biofunctionalization;80
9.1;3.1 Introduction;80
9.2;3.2 Surface Terminations;82
9.2.1;3.2.1 Controlled Surface Terminations;85
9.2.2;3.2.2 Hydroxylated Surfaces;87
9.2.3;3.2.3 Hydrogen Termination;92
9.2.4;3.2.4 Chlorine Termination;94
9.3;3.3 Organic Surface Modification via Self-Assembly Techniques;98
9.3.1;3.3.1 Silanization;99
9.3.2;3.3.2 Alkylation and Alkoxylation;100
9.3.3;3.3.3 SiC Functionalization;101
9.3.3.1;3.3.3.1 Silanized SiC;103
9.3.3.2;3.3.3.2 Alkoxylated SiC;110
9.4;3.4 Polymer Brushes;112
9.4.1;3.4.1 Fundamentals of Polymer Brushes: Properties and Applications;112
9.4.2;3.4.2 Homogeneous Polymer Brushes on SiC;117
9.4.3;3.4.3 Structured Polymer Brushes on SiC;119
9.5;3.5 Increased Cell Proliferation on SiC-Modified Surfaces;123
9.5.1;3.5.1.1 Cell Culture;124
9.5.2;3.5.2 Cell Morphology via AFM;124
9.5.3;3.5.3 Cell Viability via 96-h MTT Assays;126
9.5.4;3.5.4 Discussion;128
9.6;3.6 Conclusion;129
9.7;Acknowledgments;129
9.8;References;129
10;4 SiC In Vitro Biocompatibility: Epidermal and Connective Tissue Cells;136
10.1;4.1 Introduction;136
10.2;4.2 Cell Cultures on Single-Crystal SiC Surfaces;138
10.2.1;4.2.1 Materials, Processing, and Test Methods;139
10.2.2;4.2.2 SiC In Vitro Biocompatibility Assessment;141
10.2.3;4.2.3 Cell Protrusions on SiC and Si Substrates;146
10.3;4.3 Influence of Surface Properties on Cell Adhesion and Proliferation;148
10.3.1;4.3.1 Surface Chemistry and Wettability of SiC and Si Substrates;148
10.3.2;4.3.2 Influence of SiC Surface Topography on Cell Adhesion and Proliferation;151
10.3.3;4.3.3 Influence of SiC Surface Chemistry on Cell Adhesion and Proliferation;153
10.4;4.4 Cleaning of SiC Surfaces for Bioapplications: RCA versus Piranha;158
10.4.1;4.4.1 Effect of RCA and Piranha on Semiconductor Surface Morphology and Chemistry;158
10.4.2;4.4.2 Bioresidue on RCA-Cleaned Surfaces;159
10.4.3;4.4.3 Effect of Repeated Piranha Cleans on Chemistry, Wettability, and Cell Proliferation;162
10.5;4.5 Summary;164
10.6;Acknowledgments;166
10.7;References;166
11;5 Hemocompatibility Assessment of 3C-SiC for Cardiovascular Applications;170
11.1;5.1 Introduction;170
11.1.1;5.1.1 Thrombus Formation;173
11.1.2;5.1.2 SiC as a Promising Material for Biosensing Applications in the Bloodstream;177
11.2;5.2 Biocompatibility of Materials;178
11.2.1;5.2.1 Biocompatibility of Materials with Blood: Hemocompatibility;179
11.2.2;5.2.2 Standard ISO 10993-4;180
11.2.3;5.2.3 Perspectives in Hemocompatibility Assessment;182
11.2.4;5.2.4 The Platelet Adhesion and Activation Assessment Perspective;183
11.2.5;5.2.5 The Protein Adsorption Assessment Perspective;184
11.2.6;5.2.6 The Endothelial Cell Proliferation Perspective;185
11.3;5.3 Platelet Adhesion and Activation;185
11.3.1;5.3.1 Platelet Adhesion and Activation Assessment Protocol;188
11.3.2;5.3.2 The Impact of Surface Roughness;195
11.4;5.4 Protein Adsorption to Surfaces;200
11.4.1;5.4.1 The QCM Technology;202
11.4.2;5.4.2 Protein Adsorption Assessment Using QCM-D;203
11.4.3;5.4.3 Results;205
11.5;5.5 Microvascular Endothelial Cell Proliferation on Semiconductor Substrates;208
11.5.1;5.5.1 Microvascular Endothelial Cells and the Vessel Internal Lumen;208
11.5.2;5.5.2 Cell Proliferation in vitro: Experimental Protocol;211
11.5.3;5.5.3 MTT Assay and Fluorescent Microscopy Results;213
11.6;5.6 Conclusion;217
11.6.1;5.6.1 3C-SiC versus Si;217
11.6.2;5.6.2 Future Work;219
11.7;Acknowledgments;221
11.8;References;221
12;6 Biocompatibility of SiC for Neurological Applications;226
12.1;6.1 Introduction;226
12.2;6.2 The Basic Central Nervous System;227
12.2.1;6.2.1 The Neuron Cell;229
12.2.2;6.2.2 The Glia Cell;231
12.2.3;6.2.3 Reactive Gliosis;233
12.3;6.3 In Vitro Foreign Material and Living Cell Surface Interaction;234
12.3.1;6.3.1 SiC Biocompatibility;235
12.3.2;6.3.2 Samples and Cleaning Protocols;237
12.3.3;6.3.3 Cell Culture and MTT Assay Protocol;238
12.3.4;6.3.4 AFM Methodology for Cell Morphology and Substrate Permissiveness;239
12.3.5;6.3.5 Experimental Results;241
12.3.5.1;6.3.5.1 H4 Cells: AFM Study;242
12.3.5.2;6.3.5.2 PC12 cells: AFM study;245
12.3.6;6.3.6 Discussion of Results;248
12.4;6.4 Mouse Primary Cortical Neurons on 3C-SiC;255
12.4.1;6.4.1 Cortical Cell Biocompatibility Testing;256
12.5;6.5 In Vivo Neuronal Tissue Reaction to Cubic Silicon Carbide;259
12.5.1;6.5.1 Materials and Experimental Development;260
12.5.2;6.5.2 3C-SiC/Si(100) In Vivo Implantation;261
12.5.3;6.5.3 Experimental Results;262
12.5.4;6.5.4 In vivo Discussion and Conclusion;264
12.6;6.6 “Michigan Probe” Style 3C-SiC Biocompatibility Investigation Device;265
12.7;6.7 Conclusion;268
12.8;Acknowledgments;269
12.9;References;269
12.10;Bibliography;273
13;7 SiC for Brain–Machine Interface (BMI);274
13.1;7.1 Introduction;274
13.2;7.2 Theory of Bioelectricity;278
13.2.1;7.2.1 The Neuronal Action Potential;279
13.2.2;7.2.2 Microelectrode Device Interaction;282
13.2.3;7.2.3 Field-Effect Device Interaction;285
13.3;7.3 The Brain–Machine Interface;287
13.3.1;7.3.1 Noninvasive Neuronal Prosthetics;287
13.3.2;7.3.2 Invasive Implantable Prosthetics;289
13.4;7.4 Implantable Neural Prosthetics and the Immune System Interaction;293
13.5;7.5 Silicon Carbide Neural Activation Device (SiC-NAD);296
13.5.1;7.5.1 NAD0 Activation of a Neural Action Potential;297
13.6;7.6 Neural Interface Signal Production, Reception and Processing;300
13.6.1;7.6.1 Improving the NAD System;306
13.6.2;7.6.2 NAD Stimulation Electronics;312
13.6.3;7.6.3 NAD Recording Electronics;314
13.7;7.7 Conclusion;316
13.8;Acknowledgments;318
13.9;References;318
14;8 Porous SiC Microdialysis Technology;326
14.1;8.1 Introduction to Microdialysis Principles;326
14.1.1;8.1.1 Common Use of Microdialysis for Research and Application;330
14.1.1.1;8.1.1.1 Posttrauma Brain Monitoring;330
14.1.1.2;8.1.1.2 Postsurgery Heart Monitoring;331
14.1.1.3;8.1.1.3 Glucose Supervision;331
14.1.1.4;8.1.1.4 Drug Research;331
14.2;8.2 Membrane Types;331
14.2.1;8.2.1 Porous Polymer Membranes;332
14.2.2;8.2.2 Porous Silicon Membranes;332
14.2.3;8.2.3 Porous Silicon Carbide Membranes;334
14.2.4;8.2.4 P- and N-Type Electrochemically Etched SiC for Microdialysis Membranes;337
14.2.5;8.2.5 Columnar Porous Silicon Carbide Membranes;343
14.3;8.3 Summary;346
14.4;Acknowledgments;347
14.5;References;347
15;9 Biocompatible Sol–Gel Based Nanostructured Hydroxyapatite Coatings on Nano-porous SiC;350
15.1;9.1 Introduction;350
15.2;9.2 Porous SiC;353
15.2.1;9.2.1 Commercially Obtained Porous SiC;353
15.2.2;9.2.2 Synthesis of np-SiC with Controlled Porosity;353
15.2.3;9.2.3 Materials Synthesis;354
15.2.4;9.2.4 Materials Characterization;354
15.2.5;9.2.5 Biological Activity Study: Cell Culture;355
15.2.6;9.2.6 Fluorescence Microscopy;355
15.2.7;9.2.7 Scanning Electron Microscopy of Cell Growth on HA-Coated np-SiC Chips;356
15.3;9.3 Results and Discussion;356
15.3.1;9.3.1 HA Coating on ~10-nm np-SiC;356
15.3.2;9.3.2 MG-63 Cell Growth on Various Thicknesses of HA Coated on ~10-nm np-SiC;360
15.3.3;9.3.3 Attachment of HA Coating to ~10-nm np-SiC during MG-63 Cell Culture;361
15.3.4;9.3.4 HA Coating on Custom-Prepared ~16- and ~50-nm np-SiC;362
15.3.5;9.3.5 Cell Attachment and Viability of HA coated on Custom-Prepared ~16- and ~50-nm np-SiC;362
15.4;9.4 Conclusion;364
15.5;Acknowledgments;364
15.6;References;365
16;10 Silicon Carbide BioMEMS;368
16.1;10.1 Introduction;368
16.1.1;10.1.1 Silicon Carbide and its Connection to MEMS;368
16.1.2;10.1.2 Surface Micromachining of SiC;369
16.1.3;10.1.3 Bulk Micromachining of SiC;376
16.1.4;10.1.4 Micromolding of SiC;379
16.1.5;10.1.5 Wafer Bonding of SiC;379
16.2;10.2 6H-SiC-Based BioMEMS;380
16.2.1;10.2.1 Porous SiC Membranes for Biofiltration;380
16.2.2;10.2.2 6H-SiC Microprobes for In Vivo Biosensing;380
16.2.3;10.2.3 6H-SiC Microelectrode Arrays for In Vitro Biosensing;382
16.3;10.3 3C-SiC-Based BioMEMS;382
16.3.1;10.3.1 3C-SiC as a Material for BioMEMS;382
16.3.2;10.3.2 3C-SiC MEMS for Biomedical Imaging;383
16.3.3;10.3.3 3C-SiC NEMS for Biosensing;384
16.4;10.4 Amorphous-SiC-Based BioMEMS;385
16.4.1;10.4.1 Amorphous-SiC for Implantable BioMEMS;386
16.4.2;10.4.2 Amorphous-SiC Membranes for Microfluidics/Lab-on-a-Chip Applications;388
16.5;10.5 Conclusions;390
16.6;References;390
17;11 SiC as a Biocompatible Marker for Cell Labeling;394
17.1;11.1 Introduction;394
17.2;11.2 Synthesis;397
17.2.1;11.2.1 Bottom-Up Processes;397
17.2.2;11.2.2 Top-Down Processes;397
17.2.2.1;11.2.2.1 Electrochemical Etching;397
17.2.2.2;11.2.2.2 Laser Ablation;399
17.2.3;11.2.3 Conclusion;399
17.3;11.3 Structural and Chemical Properties of SiC Nanoparticles;400
17.3.1;11.3.1 TEM Observations;400
17.3.2;11.3.2 Surface Chemistry;403
17.3.2.1;11.3.2.1 Surface Species;403
17.3.2.2;11.3.2.2 Surface Charges;407
17.4;11.4 Optical Properties;408
17.4.1;11.4.1 Introduction;408
17.4.2;11.4.2 Quantum Confinement versus Surface States as Recombination Mechanisms in 6H-SiC Nanostructures;412
17.4.2.1;11.4.2.1 Introduction;412
17.4.2.2;11.4.2.2 Starting Bulk Material;413
17.4.2.3;11.4.2.3 Freestanding Porous 6H-SiC Layer and Nanopowder;414
17.4.2.4;11.4.2.4 From the Nanopowder to QD Suspension;417
17.4.2.5;11.4.2.5 Evidence of the Quantum Confinement Effect in the QD Suspension;420
17.4.2.6;11.4.2.6 Conclusion;423
17.4.3;11.4.3 Influence of Chemical Environment on 3C-SiC QD Fluorescence;423
17.4.3.1;11.4.3.1 Introduction;423
17.4.3.2;11.4.3.2 Solvent Effect on 3C-SiC QD Fluorescence;424
17.4.3.3;11.4.3.3 Charge Effect on 3C-SiC QD Fluorescence;425
17.4.3.4;11.4.3.4 PL Properties of 3C-SiC QDs from Laser Ablation;428
17.4.4;11.4.4 Conclusion;428
17.5;11.5 Biocompatible Cell Labeling;430
17.5.1;11.5.1 Introduction;430
17.5.2;11.5.2 Evidence of Marking;430
17.5.3;11.5.3 Heterogeneous Marking and Evidence of Penetration into the Cell Nuclei;432
17.5.4;11.5.4 Evidence of Cytocompatibility;436
17.5.5;11.5.5 Conclusion;437
17.6;11.6 Cancer Therapy;437
17.7;11.7 Chapter Summary;441
17.8;References;442
18;12 Carbon Based Materials on SiC for Advanced Biomedical Applications;448
18.1;12.1 Introduction;448
18.2;12.2 Graphene;450
18.2.1;12.2.1 The Promise of Graphene;450
18.2.2;12.2.2 Graphene Synthesis Methods;452
18.2.2.1;12.2.2.1 Chemical and Mechanical Exfoliation of Graphite;452
18.2.2.2;12.2.2.2 Chemical Vapor Deposition;453
18.2.2.3;12.2.2.3 Epitaxial Graphene on SiC;454
18.3;12.3 Pyrolyzed photoresist films (PPF);456
18.3.1;12.3.1 PPF Properties;456
18.3.2;12.3.2 PPF Synthesis on SiC;458
18.4;12.4 Graphene and pyrolyzed photoresist films for biomedical devices;458
18.5;12.5 Biocompatibility of epitaxial graphene on SiC and PPF;464
18.5.1;12.5.1 Sample Preparation Prior to Cell-Surface Interactions;464
18.5.2;12.5.2 Reuse of Epitaxial Graphene on 6H-SiC;467
18.5.3;12.5.3 Cell Morphology Inspection and Cell Viability Analysis;467
18.6;12.6 Conclusions;470
18.7;Acknowledgments;471
18.8;References;472
19;Index;476