E-Book, Englisch, Band Volume 95, 400 Seiten
Reihe: Progress in Molecular Biology and Translational Science
E-Book, Englisch, Band Volume 95, 400 Seiten
Reihe: Progress in Molecular Biology and Translational Science
ISBN: 978-0-12-385072-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Progress In Molecular Biology and Translational Science Molecular Biology of Cancer:Translation to the Clinic;4
3;Copyright;5
4;Contents;6
5;Contributors;10
6;Preface;12
7;Chapter 1: Introduction to the Molecular Biology of Cancer;14
7.1;References;20
8;Chapter 2: Molecular Biology and Anticancer Drug Discovery;22
8.1;I. Introduction;22
8.2;II. Phenotypic Targets;25
8.3;III. Molecular Targets;29
8.4;IV. Other Contemporary Issues in Anticancer Drug Discovery;39
8.5;V. Conclusions;40
8.6;References;40
9;Chapter 3: Targeting Chemokine (C-C motif) Ligand 2 (CCL2) as an Example of Translation of Cancer Molecular Biology to the Clinic;44
9.1;I. Biology of CCL2;45
9.2;II. CCL2 in Prostate Cancer;50
9.3;III. CCL2 Development as a Therapeutic Target;54
9.4;IV. Conflicting Reports on the Roles of CCL2 in Cancer;56
9.5;V. Conclusions;56
9.6;Acknowledgments;57
9.7;References;58
10;Chapter 4: Chromosomal Aberrations in Solid Tumors;68
10.1;I. Introduction;69
10.2;II. Historical Background: Discovery of Chromosome Aberrations in Cancer;70
10.3;III. Discovery of Gene Fusions in Cancer;71
10.4;IV. New Approaches for Gene Fusion Identification;74
10.5;V. Methods for the Characterization of Chromosome Aberrations in Solid Tumors;83
10.6;VI. Next-Generation Sequencing Technology;92
10.7;VII. Structural Classification of Gene Fusions;95
10.8;VIII. Functional Classification of Gene Fusions;96
10.9;IX. Mechanism of the Formation of Gene Fusions in Cancer;97
10.10;References;99
11;Chapter 5: Circulating Tumor Cells;108
11.1;I. Introduction;109
11.2;II. What Are the Technological Issues?;109
11.3;III. What Are the Clinical Utilities of CTCs Detection and Enumeration?;113
11.4;IV. CTC Characterization;119
11.5;V. Summary;120
11.6;References;121
12;Chapter 6: Stem Cells in Normal Development and Cancer;126
12.1;I. Introduction of Cancer Stem Cells and the Cancer Stem Cell Hypothesis;127
12.2;II. Comparison of Normal Stem Cells with Cancer Stem Cells;128
12.3;III. Definition of Cancer Stem Cells and Identification of Cancer Stem Cell Markers;130
12.4;IV. Identification of Cancer Stem Cells;136
12.5;V. Activation of Signaling Pathways and Targeted Therapies for Cancer Stem Cells;142
12.6;VI. Therapeutic Implications for Targeting Cancer Stem Cells;156
12.7;VII. Conclusions;157
12.8;References;158
13;Chapter 7: Bioinformatics and Systems Biology of Cancers;172
13.1;I. Introduction;173
13.2;II. The Cancer Biomedical Informatics Grid (caBIG);175
13.3;III. TCGA: The Cancer Genome Anatomy Project;178
13.4;IV. Alternative Splicing: Discovery of a New Class of Protein Cancer Biomarker Candidates;185
13.5;V. Concepts Tools for Systems Biology Analysis;194
13.6;VI. Determining the Activity of All 21,000 Protein-Coding Genes in the Human Genome;196
13.7;VII. Bioinformatics and Systems Biology of Metastasis: The Case of Lung Cancers;197
13.8;VIII. Special Resources for Pharmacogenomics of Cancer Therapies;198
13.9;IX. Conclusion;200
13.10;Acknowledgment;201
13.11;References;201
14;Chapter 8: Progress in Cancer Nanotechnology;206
14.1;I. Introduction and Historical Perspective;207
14.2;II. Targeted Therapy;208
14.3;III. Computer Simulations as an Approach to Develop Nanotechnology in Cancer;209
14.4;IV. Nanomolecular Carriers for Drugs and Imaging Agents;213
14.5;V. Nanotechnology in Cancer-Targeted Delivery of Therapeutic Agents;220
14.6;VI. Targeted Imaging;229
14.7;VII. Apoptosis Sensors;232
14.8;VIII. Future Direction in Research and Technology;240
14.9;References;241
15;Chapter 9: Applications of Molecular Imaging;250
15.1;I. Optical Imaging;251
15.2;II. Magnetic Resonance Imaging;270
15.3;III. Nuclear Imaging;284
15.4;Acknowledgments;299
15.5;References;299
16;Chapter 10: Cancer Epigenetics;312
16.1;I. Introduction;312
16.2;II. First, a Little History;313
16.3;III. Epigenetic Patterns in Normal Cells;315
16.4;IV. Epigenetic Patterns in Cancer;339
16.5;V. Epigenetic Therapies for Cancer;350
16.6;VI. Prospects for the Future of Cancer Epigenetics;355
16.7;References;357
17;Chapter 11: Molecular Targets and Clinical Cancer Risk Reductive Interventions;364
17.1;I. Defining Cancer Risk Reductive Intervention (Chemoprevention);364
17.2;II. Cellular Transformational Molecular Events as Targets for CRRIs;365
17.3;III. Inherited Genetic Mutations (Cancer Susceptibility Syndromes);365
17.4;IV. Special Features of CRRI Development;368
17.5;V. Molecular Intermediates as Biomarkers for Cancer Risk Reductive Efficacy;369
17.6;VI. Future Approaches to Molecular Biomarker Applications to CRRI;371
17.7;VII. Standards for Biomarkers as Endpoints for Cancer Risk Reductive Efficacy;371
17.8;VIII. Examples of CRRIs and Their Molecular Targets;371
17.9;IX. Nutritional Products;376
17.10;X. Multiagent CRRIs;377
17.11;XI. Molecular Viral Targets for Cancer Risk Reduction;377
17.12;References;379
18;Index;390