E-Book, Englisch, 672 Seiten
Rouault Iron-Sulfur Clusters in Chemistry and Biology
1. Auflage 2014
ISBN: 978-3-11-030842-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 672 Seiten
ISBN: 978-3-11-030842-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Researchers in inorganic, bioinorganic and biochemistry, drug dis
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Contents;9
2;Preface;5
3;Contributing authors;21
4;1 Iron-sulfur proteins: a historical perspective;25
4.1;1.1 Framing the scene;25
4.2;1.2 The early days of “nonheme iron”;25
4.3;1.3 Of proteins and analogues;26
4.4;1.4 Beyond electron shuttles;30
4.5;1.5 How are FeS clusters synthesized in cells?;31
5;Acknowledgment;32
6;References;32
7;2 Chemistry of iron-sulfur clusters;35
7.1;2.1 Introduction;35
7.2;2.2 Electronic structure of Fe-S complexes;36
7.2.1;2.2.1 Spin-polarization and strong metal-ligand bonds;36
7.2.2;2.2.2 Spin-coupling and metal-metal bonds;38
7.2.3;2.2.3 Spin resonance delocalization in mixed-valence iron pairs;38
7.3;2.3 Unique properties of Fe-S clusters;39
7.3.1;2.3.1 Stable rigid clusters mean low reorganization energy;39
7.3.2;2.3.2 Polynuclear clusters mean multiple valency;40
7.3.3;2.3.3 Resonance delocalization and [Fe4S4(Cys)4] cluster conversion;40
7.4;2.4 Summary;42
8;Acknowledgments;42
9;References;42
10;3 Quantitative interpretation of EPR spectroscopy with applications for iron-sulfur proteins;45
10.1;3.1 Introduction;45
10.2;3.2 Basic EPR theory;46
10.3;3.3 g Factor anisotropy;48
10.4;3.4 Hyperfine structure;48
10.5;3.5 Ligand interactions;50
10.6;3.6 Spin Hamiltonian;51
10.7;3.7 Basic EPR instrumentation;52
10.8;3.8 Simulation of powder spectra;53
10.9;3.9 Quantitative aspects;55
10.10;3.10 Examples;57
10.10.1;3.10.1 S = 1/2 systems;57
10.10.2;3.10.2 Spin systems with S = 3/2, 5/2, 7/2, etc.;61
10.10.3;3.10.3 Spin systems with S = 1, 2, 3, etc;66
10.11;3.11 Conclusion;70
11;References;70
12;4 The utility of Mössbauer spectroscopy in eukaryotic cell biology and animal physiology;73
12.1;4.1 Introduction;73
12.2;4.2 Transitions associated with MBS;73
12.3;4.3 Coordination chemistry of iron;75
12.4;4.4 Electron spin angular momentum and EPR spectroscopy;77
12.5;4.5 High-spin vs low-spin FeII and FeIII complexes;77
12.6;4.6 Isomer shift (d) and quadrupole splitting (.EQ);77
12.7;4.7 Effects of a magnetic field;78
12.8;4.8 Slow vs fast relaxation limit;79
12.9;4.9 MB properties of individual Fe centers found in biological systems;80
12.10;4.10 Magnetically interacting Fe aggregates;82
12.11;4.11 Insensitivity of MBS and a requirement for 57Fe enrichment;83
12.12;4.12 Invariance of spectral intensity among Fe centers;84
12.12.1;4.12.1 Mitochondria;84
12.12.2;4.12.2 Vacuoles;87
12.12.3;4.12.3 Whole yeast cells;88
12.12.4;4.12.4 Human mitochondria and cells;89
12.12.5;4.12.5 Blood;89
12.12.6;4.12.6 Heart;91
12.12.7;4.12.7 Liver;91
12.12.8;4.12.8 Spleen;92
12.12.9;4.12.9 Brain;92
12.13;4.13 Limitations of MBS and future directions;94
13;Acknowledgments;95
14;References;96
15;5 The interstitial carbide of the nitrogenase M-cluster: insertion pathway and possible function;101
15.1;5.1 Introduction;101
15.2;5.2 Proposed role of NifB in carbide insertion;103
15.3;5.3 Accumulation of a cluster intermediate on NifB;104
15.4;5.4 Investigation of the insertion of carbide into the M-cluster;106
15.5;5.5 Tracing the fate of carbide during substrate turnover;109
16;References;110
17;6 The iron-molybdenum cofactor of nitrogenase;113
17.1;6.1 Introduction;113
17.2;6.2 The metal clusters of nitrogenase;114
17.3;6.3 Structure of FeMoco;115
17.4;6.4 Redox properties of FeMoco;117
17.5;6.5 An overlooked detail: the central light atom;118
17.6;6.6 The nature of X;120
17.7;6.7 Insights into the electronic structure of FeMoco;124
17.8;6.8 A central carbon – consequences and perspectives;125
18;Acknowledgments;127
19;References;127
20;7 Biotin synthase: a role for iron-sulfur clusters in the radical-mediated generation of carbon-sulfur bonds;131
20.1;7.1 Introduction;131
20.2;7.2 Sulfur atoms in biomolecules;132
20.3;7.3 Biotin chemistry and biosynthesis;133
20.4;7.4 The biotin synthase reaction;135
20.5;7.5 The structure of biotin synthase and the radical SAM superfamily;137
20.6;7.6 The [4Fe-4S]2+ cluster and the radical SAM superfamily;141
20.7;7.7 The [2Fe-2S]2+ cluster and the sulfur insertion reaction;144
20.8;7.8 Characterization of an intermediate containing 9-MDTB and a [2Fe-2S]+ cluster;145
20.9;7.9 Other important aspects of the biotin synthase reaction;146
20.10;7.10 A role for iron-sulfur cluster assembly in the biotin synthase reaction;147
20.11;7.11 Possible mechanistic similarities with other sulfur insertion radical SAM enzymes;149
21;Acknowledgment;151
22;References;151
23;8 Molybdenum-containing iron-sulfur enzymes;157
23.1;8.1 Introduction;157
23.2;8.2 The xanthine oxidase family;158
23.2.1;8.2.1 D. gigas aldehyde:ferredoxin oxidoreductase;159
23.2.2;8.2.2 Bovine xanthine oxidoreductase;161
23.2.3;8.2.3 Aldehyde oxidases;169
23.2.4;8.2.4 CO dehydrogenase;172
23.2.5;8.2.5 4-Hydroxybenzoyl-CoA reductase;176
23.3;8.3 The DMSO reductase family;177
23.3.1;8.3.1 DMSO reductase and DMS dehydrogenase;179
23.3.2;8.3.2 Polysulfide reductase;189
23.3.3;8.3.3 Ethylbenzene dehydrogenase;193
23.3.4;8.3.4 Formate dehydrogenases;194
23.3.5;8.3.5 Bacterial nitrate reductases;204
23.3.6;8.3.6 Arsenite oxidase and arsenate reductase;212
23.3.7;8.3.7 Pyrogallol:phloroglucinol transhydroxylase;216
23.4;8.4 Prospectus;218
24;References;219
25;9 The role of iron-sulfur clusters in the biosynthesis of the lipoyl cofactor;235
25.1;9.1 Introduction;235
25.2;9.2 Discovery of LA;235
25.3;9.3 Functions of the lipoyl cofactor;236
25.3.1;9.3.1 Primary metabolism;236
25.3.2;9.3.2 Antioxidant;238
25.4;9.4 Pathways for lipoyl cofactor biosynthesis;239
25.4.1;9.4.1 Exogenous pathway;239
25.4.2;9.4.2 Endogenous pathway;240
25.5;9.5 Characterization of LipA;241
25.5.1;9.5.1 Discovery of LipA;241
25.5.2;9.5.2 In vivo characterization of LipA;241
25.5.3;9.5.3 LipA is an iron-sulfur enzyme;243
25.5.4;9.5.4 LipA is an RS enzyme;244
25.5.5;9.5.5 Product inhibition of LipA;248
25.5.6;9.5.6 LipA contains two [4Fe-4S] clusters;249
25.5.7;9.5.7 Two distinct roles for the iron-sulfur clusters;250
25.5.8;9.5.8 A unique intermediate;251
25.5.9;9.5.9 A proposed mechanism for the biosynthesis of the lipoyl cofactor;253
25.6;9.6 Conclusions;255
26;Acknowledgment;255
27;References;255
28;10 Iron-sulfur clusters and molecular oxygen: function, adaptation, degradation, and repair;263
28.1;10.1 Introduction;263
28.2;10.2 Fe-S clusters – reasons for their abundance;264
28.2.1;10.2.1 Origin of Fe-S clusters;264
28.2.2;10.2.2 Functions of Fe-S clusters;265
28.3;10.3 Oxygen and Fe-S clusters;267
28.3.1;10.3.1 Properties of molecular oxygen and its partially reduced species;267
28.3.2;10.3.2 Oxidative damage to Fe-S clusters;269
28.3.3;10.3.3 Molecular mechanisms of oxidative damage to Fe4S4 clusters;270
28.3.4;10.3.4 Fe3S4 to Fe2S2 cluster conversion in FNR;271
28.3.5;10.3.5 X-ray crystallographic studies;271
28.3.6;10.3.6 Alternative reactions can occur and compete;273
28.3.7;10.3.7 Structural changes;274
28.4;10.4 Adaptation to oxygen;274
28.4.1;10.4.1 Switch between metabolisms or restriction to niches;276
28.4.2;10.4.2 O2-tolerant NiFe hydrogenases;277
28.4.3;10.4.3 Protective systems against ROS;280
28.4.4;10.4.4 Evolutionary replacement of Fe-S clusters to keep essential functions in aerobic organisms;281
28.5;10.5 Conclusions;282
29;References;283
30;11 A retrospective on the discovery of [Fe-S] cluster biosynthetic machineries in Azotobacter vinelandii;291
30.1;11.1 Introduction;291
30.2;11.2 An introduction to nitrogenase;293
30.3;11.3 Approaches to identify gene-product and product-function relationships;297
30.4;11.4 FeMoco and development of the scaffold hypothesis for complex [Fe-S] cluster formation;297
30.5;11.5 An approach for the analysis of nif gene product function;300
30.5.1;11.5.1 Phenotypes associated with loss of NifS or NifU function indicate their involvement in nitrogenase-associated [Fe-S] cluster formation;301
30.5.2;11.5.2 NifS is a cysteine desulfurase;302
30.5.3;11.5.3 Extension of the scaffold hypothesis to NifU function;306
30.5.4;11.5.4 Discovery of isc system for [Fe-S] cluster formation and functional cross-talk among [Fe-S] cluster biosynthetic systems;312
30.6;11.6 The Isc system is essential in A. vinelandii;314
30.7;11.7 There is limited functional cross-talk between the Nif and Isc systems;315
30.8;11.8 Closing remarks;316
31;Acknowledgments;316
32;References;316
33;12 A stress-responsive Fe-S cluster biogenesis system in bacteria – the suf operon of Gammaproteobacteria;321
33.1;12.1 Introduction to Fe-S cluster biogenesis;321
33.2;12.2 Sulfur trafficking for Fe-S cluster biogenesis;322
33.3;12.3 Iron donation for Fe-S cluster biogenesis;323
33.4;12.4 Fe-S cluster assembly and trafficking;325
33.5;12.5 Iron and oxidative stress are intimately intertwined;327
33.6;12.6 Stress-response Fe-S cluster biogenesis in E. coli;330
33.7;12.7 Sulfur trafficking in the stress-response Suf pathway;331
33.8;12.8 Stress-responsive iron donation for the Suf pathway;335
33.8.1;12.8.1 SufD;335
33.8.2;12.8.2 Iron storage proteins;337
33.8.3;12.8.3 Other candidates;338
33.9;12.9 Unanswered questions about Suf and Isc roles in E. coli;339
34;Acknowledgment;339
35;References;340
36;13 Sensing the cellular Fe-S cluster demand: a structural, functional, and phylogenetic overview of Escherichia coli IscR;349
36.1;13.1 Introduction;349
36.2;13.2 General properties of IscR;350
36.3;13.3 [2Fe-2S]-IscR represses Isc expression via a negative feedback loop;352
36.4;13.4 IscR adjusts synthesis of the Isc pathway based on the cellular Fe-S demand;354
36.5;13.5 IscR has a global role in maintaining Fe-S homeostasis;356
36.6;13.6 Fe-S cluster ligation broadens DNA site specificity for IscR;357
36.7;13.7 Phylogenetic analysis of IscR;359
36.8;13.8 Binding to two classes of DNA sites allows IscR to differentially regulate transcription in response to O2;363
36.9;13.9 Roles of IscR beyond Fe-S homeostasis;365
36.10;13.10 Additional aspects of IscR regulation;365
36.11;13.11 Summary;366
37;Acknowledgments;366
38;References;366
39;14 Fe-S assembly in Gram-positive bacteria;371
39.1;14.1 Introduction;371
39.2;14.2 Fe-S proteins in Gram-positive bacteria;371
39.3;14.3 Fe-S cluster assembly orthologous proteins;373
39.3.1;14.3.1 Clostridia-ISC system;373
39.3.2;14.3.2 Actinobacteria-SUF;378
39.3.3;14.3.3 Bacilli-SUF;379
39.4;14.4 Concluding remarks and remaining questions;386
40;References;387
41;15 Fe-S cluster assembly and regulation in yeast;391
41.1;15.1 Introduction;391
41.2;15.2 Yeast and Fe-S cluster assembly – evolutionary considerations;391
41.2.1;15.2.1 Nfs1 and the surprise of Isd11;392
41.2.2;15.2.2 Scaffold proteins in yeast mitochondria;393
41.2.3;15.2.3 Frataxin’s roles throughout evolution;394
41.2.4;15.2.4 Ssq1 is a specialized Hsp70 chaperone arising by convergent evolution;395
41.2.5;15.2.5 Atm1 and CIA components;395
41.2.6;15.2.6 Yeast components are conserved with their human counterparts;396
41.2.7;15.2.7 Yeast Fe-S cluster assembly mutants modeling aspects of human diseases;397
41.3;15.3 Yeast genetic screens pointing to the Fe-S cluster assembly apparatus;398
41.3.1;15.3.1 Misregulation of iron uptake;398
41.3.2;15.3.2 Suppression of µsod1 amino acid auxotrophies;399
41.3.3;15.3.3 tRNA modification and the SPL1-1 allele;400
41.3.4;15.3.4 tRNA thiolation and resistance to killer toxin;400
41.3.5;15.3.5 Cytoplasmic aconitase maturation;400
41.3.6;15.3.6 Ribosome assembly;401
41.3.7;15.3.7 Synthetic lethality with the pol3-13 allele;401
41.3.8;15.3.8 Factors needed for Yap5 response to high iron;402
41.3.9;15.3.9 Screening of essential genes coding for mitochondrial proteins;403
41.4;15.4 Mitochondrial Fe-S cluster assembly;403
41.4.1;15.4.1 Mitochondrial cysteine desulfurase;405
41.4.2;15.4.2 Formation of the Isu Fe-S cluster intermediate in mitochondria;409
41.4.3;15.4.3 Roles of frataxin;410
41.4.4;15.4.4 Bypass mutation in Isu;411
41.4.5;15.4.5 Transfer of the mitochondrial Isu Fe-S cluster intermediate;412
41.4.6;15.4.6 Role of Grx5;412
41.4.7;15.4.7 The switch between cluster synthesis and cluster transfer;413
41.5;15.5 Role of glutathione;414
41.5.1;15.5.1 Glutathione and monothiol glutaredoxins in mitochondria;415
41.5.2;15.5.2 Glutathione and monothiol glutaredoxins Grx3 and Grx4 outside of mitochondria;416
41.6;15.6 Role of Atm1, an ABC transporter of the mitochondrial inner membrane;417
41.6.1;15.6.1 Cells lacking Atm1 lose mtDNA;418
41.7;15.7 Relationship between Fe-S cluster biogenesis and iron homeostasis;420
41.8;15.8 Conclusion and missing pieces;426
42;Acknowledgments;427
43;References;427
44;16 The role of Fe-S clusters in regulation of yeast iron homeostasis;435
44.1;16.1 Introduction;435
44.2;16.2 Iron acquisition and trafficking in yeast;435
44.3;16.3 Regulation of iron homeostasis in S. cerevisiae;438
44.3.1;16.3.1 Aft1/Aft2 low-iron transcriptional regulators and target genes;438
44.3.2;16.3.2 Yap5 high-iron transcriptional regulator and target genes;440
44.3.3;16.3.3 Links among mitochondrial Fe-S cluster biogenesis, the Grx3/Grx4/ Fra2/Fra1 signaling pathway, and Aft1/Aft2 regulation;441
44.3.4;16.3.4 Fe-S cluster binding by Grx3/4 and Fra2 is important for their function in S. cerevisiae iron regulation;442
44.3.5;16.3.5 Working model for Fe-dependent regulation of Aft1/2 via the Fra1/Fra2/ Grx3/Grx4 signaling pathway;444
44.3.6;16.3.6 Yap5 regulation and mitochondrial Fe-S cluster biogenesis;446
44.4;16.4 Regulation of iron homeostasis in S. pombe;447
44.4.1;16.4.1 Fep1 and Php4 transcriptional repressors and target genes;447
44.4.2;16.4.2 Roles for Grx4 in regulation of Fep1 and Php4 activity;450
44.4.3;16.4.3 Molecular basis of iron-dependent control of Fep1 activity;452
44.4.4;16.4.4 Molecular basis of iron-dependent control of Php4 activity;453
44.5;16.5 Summary;454
45;Acknowledgments;455
46;References;455
47;17 Biogenesis of Fe-S proteins in mammals;461
47.1;17.1 Introduction;461
47.2;17.2 The Fe-S regulatory switch of IRP1;461
47.3;17.3 IRP2, a highly homologous gene, also post-transcriptionally regulates iron metabolism, but iron sensing occurs through the regulation of its degradation rather than through an Fe-S switch mechanism;465
47.4;17.4 Identification of the mammalian cysteine desulfurase and two scaffold proteins: implications for compartmentalization of the process;466
47.5;17.5 Sequential steps in Fe-S biogenesis – an initial Fe-S assembly process on a scaffold, followed by Fe-S transfer to recipient proteins, aided by a chaperone-co-chaperone system;467
47.6;17.6 Mitochondrial iron overload in response to defects in Fe-S biogenesis raises important questions about how mitochondrial iron homeostasis is regulated;470
47.7;17.7 Perspectives and future directions;471
48;References;472
49;18 Iron-sulfur proteins and human diseases;479
49.1;18.1 Introduction;479
49.2;18.2 Oxidative susceptibility of Fe-S proteins;480
49.2.1;18.2.1 Aconitases: targets of oxidative stress in disease and aging;482
49.3;18.3 Diseases associated with genetic defects in Fe-S proteins;485
49.3.1;18.3.1 Mitochondrial respiratory complexes and human diseases;485
49.3.2;18.3.2 FECH deficiency causes erythropoietic protoporhyria (MIM 177000);490
49.3.3;18.3.3 DNA repair Fe-S proteins and human disorders;491
49.4;18.4 Diseases associated with genetic defects in Fe-S cluster biogenesis;493
49.4.1;18.4.1 A GAA trinucleotide repeat expansion in FXN is the major cause of the neurodegenerative disorder Friedreich ataxia;496
49.4.2;18.4.2 Mutations in ABCB7 cause X-linked sideroblastic anemia with ataxia;500
49.4.3;18.4.3 Mutations in glutaredoxin 5 cause an autosomal recessive pyridoxine-refractory sideroblastic anemia;501
49.4.4;18.4.4 Mutations in ISCU cause myopathy with lactic acidosis (MIM 255125);502
49.4.5;18.4.5 NUBPL mutations cause childhood-onset mitochondrial encephalomyopathy and respiratory complex I deficiency (MIM252010);505
49.4.6;18.4.6 Mutations in NFU1 cause multiple mitochondrial dysfunctions syndrome 1 (MIM 605711);506
49.4.7;18.4.7 Mutations in BOLA3 cause multiple mitochondrial dysfunctions syndrome 2 (MIM 614299);509
49.4.8;18.4.8 IBA57 deficiency causes severe myopathy and encephalopathy;510
49.4.9;18.4.9 A mutation in ISD11 causes deficiencies of respiratory complexes;510
49.5;18.5 Fe-S cluster biogenesis and iron homeostasis;511
49.6;18.6 Therapeutic strategies;512
50;Acknowledgments;514
51;References;514
52;19 Connecting the biosynthesis of the molybdenum cofactor, Fe-S clusters, and tRNA thiolation in humans;537
52.1;19.1 Introduction;537
52.2;19.2 Pathways for the formation of Moco and thiolated tRNAs in humans;539
52.2.1;19.2.1 Moco biosynthesis in mammals;539
52.2.2;19.2.2 The role of tRNA thiolation in the cell;549
52.3;19.3 The connection between sulfur-containing biomolecules and their distribution in different compartments in the cell;551
52.3.1;19.3.1 Sulfur transfer in mitochondria;551
52.3.2;19.3.2 Sulfur transfer in the cytosol;553
52.3.3;19.3.3 Role of NFS1, ISD11, URM1, and MOCS2A in the nucleus;556
53;Acknowledgments;558
54;References;558
55;20 Iron-sulfur proteins and genome stability;565
55.1;20.1 Introduction;565
55.2;20.2 The importance of genome stability;565
55.3;20.3 Link between FeS cluster biogenesis and genome stability;566
55.4;20.4 FeS proteins in DNA replication;568
55.4.1;20.4.1 DNA primase and DNA polymerase a;569
55.4.2;20.4.2 DNA polymerases d and e;570
55.4.3;20.4.3 DNA2;571
55.5;20.5 FeS proteins in DNA repair;572
55.5.1;20.5.1 DNA glycosylases;573
55.5.2;20.5.2 The Rad3 family of helicases;575
55.6;20.6 Summary;579
56;References;579
57;21 Eukaryotic iron-sulfur protein biogenesis and its role in maintaining genomic integrity;565
57.1;21.1 Introduction;587
57.2;21.2 Biogenesis of mitochondrial Fe-S proteins;592
57.2.1;21.2.1 Step 1: De novo Fe-S cluster assembly on the Isu1 scaffold protein;592
57.2.2;21.2.2 Step 2: Chaperone-dependent release of the Isu1-bound Fe-S cluster;593
57.2.3;21.2.3 Step 3: Late-acting ISC assembly proteins function in [4Fe-4S] cluster synthesis and in target-specific Fe-S cluster insertion;595
57.3;21.3 The role of the mitochondrial ABC transporter Atm 1 in the biogenesis of cytosolic and nuclear Fe-S proteins and in iron regulation;598
57.4;21.4 The role of the CIA machinery in the biogenesis of cytosolic and nuclear Fe-S proteins;600
57.4.1;21.4.1 Step 1: The synthesis of a [4Fe-4S] on the scaffold complex Cfd1-Nbp35;600
57.4.2;21.4.2 Step 2: Transfer of the [4Fe-4S] cluster to target apo-proteins;600
57.5;21.5 Specialized functions of the human CIA-targeting complex components;601
57.5.1;21.5.1 Dedicated biogenesis of cytosolic and nuclear Fe-S proteins;601
57.5.2;21.5.2 The dual role of CIA2A in iron homeostasis;602
57.6;21.6 Fe-S protein assembly and the maintenance of genomic stability;603
57.6.1;21.6.1 Late-acting CIA factors in DNA metabolism;604
57.6.2;21.6.2 XPD and the Rad3 family of DNA helicases;605
57.6.3;21.6.3 Fe-S proteins involved in DNA replication;606
57.6.4;21.6.4 DNA glycosylases as Fe-S proteins;607
57.7;21.7 Biochemical functions of Fe-S clusters in DNA metabolic enzymes;607
57.8;21.8 Interplay among Fe-S proteins, genome stability, and tumorigenesis;609
57.9;21.9 Summary;611
58;Acknowledgments;612
59;References;612
60;22 Iron-sulfur cluster assembly in plants;623
60.1;22.1 Introduction;623
60.2;22.2 Iron uptake, translocation, and distribution;623
60.3;22.3 Fe-S cluster assembly;625
60.3.1;22.3.1 SUF system in plastids;627
60.3.2;22.3.2 ISC system in mitochondria;630
60.3.3;22.3.3 CIA system in cytosol;632
60.4;22.4 Regulation of cellular iron homeostasis by Fe-S cluster biosynthesis;634
60.5;22.5 Conservation of Fe-S cluster assembly genes across the green lineage;634
60.6;22.6 Potential significance to agriculture;636
61;Acknowledgments;637
62;References;637
63;23 Origin and evolution of Fe-S proteins and enzymes;643
63.1;23.1 Introduction;643
63.2;23.2 Fe-S chemistry and the origin of life;643
63.3;23.3 The ubiquity and antiquity of biological Fe-S clusters;646
63.4;23.4 Early energy conversion;650
63.5;23.5 Evolution of complex Fe-S cluster containing proteins;654
63.6;23.6 The path from minerals to Fe-S proteins and enzymes;656
64;References;657
65;Index;661