Rouault | Iron-Sulfur Clusters in Chemistry and Biology | E-Book | sack.de
E-Book

E-Book, Englisch, 672 Seiten

Rouault Iron-Sulfur Clusters in Chemistry and Biology


1. Auflage 2014
ISBN: 978-3-11-030842-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 672 Seiten

ISBN: 978-3-11-030842-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This volume on iron-sulfur proteins includes chapters that describe the initial discovery of iron-sulfur proteins in the 1960s to elucidation of the roles of iron sulfur clusters as prosthetic groups of enzymes, such as the citric acid cycle enzyme, aconitase, and numerous other proteins, ranging from nitrogenase to DNA repair proteins. The capacity of iron sulfur clusters to accept and delocalize single electrons is explained by basic chemical principles, which illustrate why iron sulfur proteins are uniquely suitable for electron transport and other activities. Techniques used for detection and stabilization of iron-sulfur clusters, including EPR and Mossbauer spectroscopies, are discussed because they are important for characterizing unrecognized and elusive iron sulfur proteins. Recent insights into how nitrogenase works have arisen from multiple advances, described here, including studies of high-resolution crystal structures. Numerous chapters discuss how microbes, plants, and animals synthesize these complex prosthetic groups, and why it is important to understand the chemistry and biogenesis of iron sulfur proteins. In addition to their vital importance in mitochondrial respiration, numerous iron sulfur proteins are important in maintenance of DNA integrity. Multiple rare human diseases with different clinical presentations are caused by mutations of genes in the iron sulfur cluster biogenesis pathway. Understanding iron sulfur proteins is important for understanding a rapidly expanding group of metabolic pathways important in all kingdoms of life, and for understanding processes ranging from nitrogen fixation to human disease.
Rouault Iron-Sulfur Clusters in Chemistry and Biology jetzt bestellen!

Zielgruppe


Researchers in inorganic, bioinorganic and biochemistry, drug dis

Weitere Infos & Material


1;Contents;9
2;Preface;5
3;Contributing authors;21
4;1 Iron-sulfur proteins: a historical perspective;25
4.1;1.1 Framing the scene;25
4.2;1.2 The early days of “nonheme iron”;25
4.3;1.3 Of proteins and analogues;26
4.4;1.4 Beyond electron shuttles;30
4.5;1.5 How are FeS clusters synthesized in cells?;31
5;Acknowledgment;32
6;References;32
7;2 Chemistry of iron-sulfur clusters;35
7.1;2.1 Introduction;35
7.2;2.2 Electronic structure of Fe-S complexes;36
7.2.1;2.2.1 Spin-polarization and strong metal-ligand bonds;36
7.2.2;2.2.2 Spin-coupling and metal-metal bonds;38
7.2.3;2.2.3 Spin resonance delocalization in mixed-valence iron pairs;38
7.3;2.3 Unique properties of Fe-S clusters;39
7.3.1;2.3.1 Stable rigid clusters mean low reorganization energy;39
7.3.2;2.3.2 Polynuclear clusters mean multiple valency;40
7.3.3;2.3.3 Resonance delocalization and [Fe4S4(Cys)4] cluster conversion;40
7.4;2.4 Summary;42
8;Acknowledgments;42
9;References;42
10;3 Quantitative interpretation of EPR spectroscopy with applications for iron-sulfur proteins;45
10.1;3.1 Introduction;45
10.2;3.2 Basic EPR theory;46
10.3;3.3 g Factor anisotropy;48
10.4;3.4 Hyperfine structure;48
10.5;3.5 Ligand interactions;50
10.6;3.6 Spin Hamiltonian;51
10.7;3.7 Basic EPR instrumentation;52
10.8;3.8 Simulation of powder spectra;53
10.9;3.9 Quantitative aspects;55
10.10;3.10 Examples;57
10.10.1;3.10.1 S = 1/2 systems;57
10.10.2;3.10.2 Spin systems with S = 3/2, 5/2, 7/2, etc.;61
10.10.3;3.10.3 Spin systems with S = 1, 2, 3, etc;66
10.11;3.11 Conclusion;70
11;References;70
12;4 The utility of Mössbauer spectroscopy in eukaryotic cell biology and animal physiology;73
12.1;4.1 Introduction;73
12.2;4.2 Transitions associated with MBS;73
12.3;4.3 Coordination chemistry of iron;75
12.4;4.4 Electron spin angular momentum and EPR spectroscopy;77
12.5;4.5 High-spin vs low-spin FeII and FeIII complexes;77
12.6;4.6 Isomer shift (d) and quadrupole splitting (.EQ);77
12.7;4.7 Effects of a magnetic field;78
12.8;4.8 Slow vs fast relaxation limit;79
12.9;4.9 MB properties of individual Fe centers found in biological systems;80
12.10;4.10 Magnetically interacting Fe aggregates;82
12.11;4.11 Insensitivity of MBS and a requirement for 57Fe enrichment;83
12.12;4.12 Invariance of spectral intensity among Fe centers;84
12.12.1;4.12.1 Mitochondria;84
12.12.2;4.12.2 Vacuoles;87
12.12.3;4.12.3 Whole yeast cells;88
12.12.4;4.12.4 Human mitochondria and cells;89
12.12.5;4.12.5 Blood;89
12.12.6;4.12.6 Heart;91
12.12.7;4.12.7 Liver;91
12.12.8;4.12.8 Spleen;92
12.12.9;4.12.9 Brain;92
12.13;4.13 Limitations of MBS and future directions;94
13;Acknowledgments;95
14;References;96
15;5 The interstitial carbide of the nitrogenase M-cluster: insertion pathway and possible function;101
15.1;5.1 Introduction;101
15.2;5.2 Proposed role of NifB in carbide insertion;103
15.3;5.3 Accumulation of a cluster intermediate on NifB;104
15.4;5.4 Investigation of the insertion of carbide into the M-cluster;106
15.5;5.5 Tracing the fate of carbide during substrate turnover;109
16;References;110
17;6 The iron-molybdenum cofactor of nitrogenase;113
17.1;6.1 Introduction;113
17.2;6.2 The metal clusters of nitrogenase;114
17.3;6.3 Structure of FeMoco;115
17.4;6.4 Redox properties of FeMoco;117
17.5;6.5 An overlooked detail: the central light atom;118
17.6;6.6 The nature of X;120
17.7;6.7 Insights into the electronic structure of FeMoco;124
17.8;6.8 A central carbon – consequences and perspectives;125
18;Acknowledgments;127
19;References;127
20;7 Biotin synthase: a role for iron-sulfur clusters in the radical-mediated generation of carbon-sulfur bonds;131
20.1;7.1 Introduction;131
20.2;7.2 Sulfur atoms in biomolecules;132
20.3;7.3 Biotin chemistry and biosynthesis;133
20.4;7.4 The biotin synthase reaction;135
20.5;7.5 The structure of biotin synthase and the radical SAM superfamily;137
20.6;7.6 The [4Fe-4S]2+ cluster and the radical SAM superfamily;141
20.7;7.7 The [2Fe-2S]2+ cluster and the sulfur insertion reaction;144
20.8;7.8 Characterization of an intermediate containing 9-MDTB and a [2Fe-2S]+ cluster;145
20.9;7.9 Other important aspects of the biotin synthase reaction;146
20.10;7.10 A role for iron-sulfur cluster assembly in the biotin synthase reaction;147
20.11;7.11 Possible mechanistic similarities with other sulfur insertion radical SAM enzymes;149
21;Acknowledgment;151
22;References;151
23;8 Molybdenum-containing iron-sulfur enzymes;157
23.1;8.1 Introduction;157
23.2;8.2 The xanthine oxidase family;158
23.2.1;8.2.1 D. gigas aldehyde:ferredoxin oxidoreductase;159
23.2.2;8.2.2 Bovine xanthine oxidoreductase;161
23.2.3;8.2.3 Aldehyde oxidases;169
23.2.4;8.2.4 CO dehydrogenase;172
23.2.5;8.2.5 4-Hydroxybenzoyl-CoA reductase;176
23.3;8.3 The DMSO reductase family;177
23.3.1;8.3.1 DMSO reductase and DMS dehydrogenase;179
23.3.2;8.3.2 Polysulfide reductase;189
23.3.3;8.3.3 Ethylbenzene dehydrogenase;193
23.3.4;8.3.4 Formate dehydrogenases;194
23.3.5;8.3.5 Bacterial nitrate reductases;204
23.3.6;8.3.6 Arsenite oxidase and arsenate reductase;212
23.3.7;8.3.7 Pyrogallol:phloroglucinol transhydroxylase;216
23.4;8.4 Prospectus;218
24;References;219
25;9 The role of iron-sulfur clusters in the biosynthesis of the lipoyl cofactor;235
25.1;9.1 Introduction;235
25.2;9.2 Discovery of LA;235
25.3;9.3 Functions of the lipoyl cofactor;236
25.3.1;9.3.1 Primary metabolism;236
25.3.2;9.3.2 Antioxidant;238
25.4;9.4 Pathways for lipoyl cofactor biosynthesis;239
25.4.1;9.4.1 Exogenous pathway;239
25.4.2;9.4.2 Endogenous pathway;240
25.5;9.5 Characterization of LipA;241
25.5.1;9.5.1 Discovery of LipA;241
25.5.2;9.5.2 In vivo characterization of LipA;241
25.5.3;9.5.3 LipA is an iron-sulfur enzyme;243
25.5.4;9.5.4 LipA is an RS enzyme;244
25.5.5;9.5.5 Product inhibition of LipA;248
25.5.6;9.5.6 LipA contains two [4Fe-4S] clusters;249
25.5.7;9.5.7 Two distinct roles for the iron-sulfur clusters;250
25.5.8;9.5.8 A unique intermediate;251
25.5.9;9.5.9 A proposed mechanism for the biosynthesis of the lipoyl cofactor;253
25.6;9.6 Conclusions;255
26;Acknowledgment;255
27;References;255
28;10 Iron-sulfur clusters and molecular oxygen: function, adaptation, degradation, and repair;263
28.1;10.1 Introduction;263
28.2;10.2 Fe-S clusters – reasons for their abundance;264
28.2.1;10.2.1 Origin of Fe-S clusters;264
28.2.2;10.2.2 Functions of Fe-S clusters;265
28.3;10.3 Oxygen and Fe-S clusters;267
28.3.1;10.3.1 Properties of molecular oxygen and its partially reduced species;267
28.3.2;10.3.2 Oxidative damage to Fe-S clusters;269
28.3.3;10.3.3 Molecular mechanisms of oxidative damage to Fe4S4 clusters;270
28.3.4;10.3.4 Fe3S4 to Fe2S2 cluster conversion in FNR;271
28.3.5;10.3.5 X-ray crystallographic studies;271
28.3.6;10.3.6 Alternative reactions can occur and compete;273
28.3.7;10.3.7 Structural changes;274
28.4;10.4 Adaptation to oxygen;274
28.4.1;10.4.1 Switch between metabolisms or restriction to niches;276
28.4.2;10.4.2 O2-tolerant NiFe hydrogenases;277
28.4.3;10.4.3 Protective systems against ROS;280
28.4.4;10.4.4 Evolutionary replacement of Fe-S clusters to keep essential functions in aerobic organisms;281
28.5;10.5 Conclusions;282
29;References;283
30;11 A retrospective on the discovery of [Fe-S] cluster biosynthetic machineries in Azotobacter vinelandii;291
30.1;11.1 Introduction;291
30.2;11.2 An introduction to nitrogenase;293
30.3;11.3 Approaches to identify gene-product and product-function relationships;297
30.4;11.4 FeMoco and development of the scaffold hypothesis for complex [Fe-S] cluster formation;297
30.5;11.5 An approach for the analysis of nif gene product function;300
30.5.1;11.5.1 Phenotypes associated with loss of NifS or NifU function indicate their involvement in nitrogenase-associated [Fe-S] cluster formation;301
30.5.2;11.5.2 NifS is a cysteine desulfurase;302
30.5.3;11.5.3 Extension of the scaffold hypothesis to NifU function;306
30.5.4;11.5.4 Discovery of isc system for [Fe-S] cluster formation and functional cross-talk among [Fe-S] cluster biosynthetic systems;312
30.6;11.6 The Isc system is essential in A. vinelandii;314
30.7;11.7 There is limited functional cross-talk between the Nif and Isc systems;315
30.8;11.8 Closing remarks;316
31;Acknowledgments;316
32;References;316
33;12 A stress-responsive Fe-S cluster biogenesis system in bacteria – the suf operon of Gammaproteobacteria;321
33.1;12.1 Introduction to Fe-S cluster biogenesis;321
33.2;12.2 Sulfur trafficking for Fe-S cluster biogenesis;322
33.3;12.3 Iron donation for Fe-S cluster biogenesis;323
33.4;12.4 Fe-S cluster assembly and trafficking;325
33.5;12.5 Iron and oxidative stress are intimately intertwined;327
33.6;12.6 Stress-response Fe-S cluster biogenesis in E. coli;330
33.7;12.7 Sulfur trafficking in the stress-response Suf pathway;331
33.8;12.8 Stress-responsive iron donation for the Suf pathway;335
33.8.1;12.8.1 SufD;335
33.8.2;12.8.2 Iron storage proteins;337
33.8.3;12.8.3 Other candidates;338
33.9;12.9 Unanswered questions about Suf and Isc roles in E. coli;339
34;Acknowledgment;339
35;References;340
36;13 Sensing the cellular Fe-S cluster demand: a structural, functional, and phylogenetic overview of Escherichia coli IscR;349
36.1;13.1 Introduction;349
36.2;13.2 General properties of IscR;350
36.3;13.3 [2Fe-2S]-IscR represses Isc expression via a negative feedback loop;352
36.4;13.4 IscR adjusts synthesis of the Isc pathway based on the cellular Fe-S demand;354
36.5;13.5 IscR has a global role in maintaining Fe-S homeostasis;356
36.6;13.6 Fe-S cluster ligation broadens DNA site specificity for IscR;357
36.7;13.7 Phylogenetic analysis of IscR;359
36.8;13.8 Binding to two classes of DNA sites allows IscR to differentially regulate transcription in response to O2;363
36.9;13.9 Roles of IscR beyond Fe-S homeostasis;365
36.10;13.10 Additional aspects of IscR regulation;365
36.11;13.11 Summary;366
37;Acknowledgments;366
38;References;366
39;14 Fe-S assembly in Gram-positive bacteria;371
39.1;14.1 Introduction;371
39.2;14.2 Fe-S proteins in Gram-positive bacteria;371
39.3;14.3 Fe-S cluster assembly orthologous proteins;373
39.3.1;14.3.1 Clostridia-ISC system;373
39.3.2;14.3.2 Actinobacteria-SUF;378
39.3.3;14.3.3 Bacilli-SUF;379
39.4;14.4 Concluding remarks and remaining questions;386
40;References;387
41;15 Fe-S cluster assembly and regulation in yeast;391
41.1;15.1 Introduction;391
41.2;15.2 Yeast and Fe-S cluster assembly – evolutionary considerations;391
41.2.1;15.2.1 Nfs1 and the surprise of Isd11;392
41.2.2;15.2.2 Scaffold proteins in yeast mitochondria;393
41.2.3;15.2.3 Frataxin’s roles throughout evolution;394
41.2.4;15.2.4 Ssq1 is a specialized Hsp70 chaperone arising by convergent evolution;395
41.2.5;15.2.5 Atm1 and CIA components;395
41.2.6;15.2.6 Yeast components are conserved with their human counterparts;396
41.2.7;15.2.7 Yeast Fe-S cluster assembly mutants modeling aspects of human diseases;397
41.3;15.3 Yeast genetic screens pointing to the Fe-S cluster assembly apparatus;398
41.3.1;15.3.1 Misregulation of iron uptake;398
41.3.2;15.3.2 Suppression of µsod1 amino acid auxotrophies;399
41.3.3;15.3.3 tRNA modification and the SPL1-1 allele;400
41.3.4;15.3.4 tRNA thiolation and resistance to killer toxin;400
41.3.5;15.3.5 Cytoplasmic aconitase maturation;400
41.3.6;15.3.6 Ribosome assembly;401
41.3.7;15.3.7 Synthetic lethality with the pol3-13 allele;401
41.3.8;15.3.8 Factors needed for Yap5 response to high iron;402
41.3.9;15.3.9 Screening of essential genes coding for mitochondrial proteins;403
41.4;15.4 Mitochondrial Fe-S cluster assembly;403
41.4.1;15.4.1 Mitochondrial cysteine desulfurase;405
41.4.2;15.4.2 Formation of the Isu Fe-S cluster intermediate in mitochondria;409
41.4.3;15.4.3 Roles of frataxin;410
41.4.4;15.4.4 Bypass mutation in Isu;411
41.4.5;15.4.5 Transfer of the mitochondrial Isu Fe-S cluster intermediate;412
41.4.6;15.4.6 Role of Grx5;412
41.4.7;15.4.7 The switch between cluster synthesis and cluster transfer;413
41.5;15.5 Role of glutathione;414
41.5.1;15.5.1 Glutathione and monothiol glutaredoxins in mitochondria;415
41.5.2;15.5.2 Glutathione and monothiol glutaredoxins Grx3 and Grx4 outside of mitochondria;416
41.6;15.6 Role of Atm1, an ABC transporter of the mitochondrial inner membrane;417
41.6.1;15.6.1 Cells lacking Atm1 lose mtDNA;418
41.7;15.7 Relationship between Fe-S cluster biogenesis and iron homeostasis;420
41.8;15.8 Conclusion and missing pieces;426
42;Acknowledgments;427
43;References;427
44;16 The role of Fe-S clusters in regulation of yeast iron homeostasis;435
44.1;16.1 Introduction;435
44.2;16.2 Iron acquisition and trafficking in yeast;435
44.3;16.3 Regulation of iron homeostasis in S. cerevisiae;438
44.3.1;16.3.1 Aft1/Aft2 low-iron transcriptional regulators and target genes;438
44.3.2;16.3.2 Yap5 high-iron transcriptional regulator and target genes;440
44.3.3;16.3.3 Links among mitochondrial Fe-S cluster biogenesis, the Grx3/Grx4/ Fra2/Fra1 signaling pathway, and Aft1/Aft2 regulation;441
44.3.4;16.3.4 Fe-S cluster binding by Grx3/4 and Fra2 is important for their function in S. cerevisiae iron regulation;442
44.3.5;16.3.5 Working model for Fe-dependent regulation of Aft1/2 via the Fra1/Fra2/ Grx3/Grx4 signaling pathway;444
44.3.6;16.3.6 Yap5 regulation and mitochondrial Fe-S cluster biogenesis;446
44.4;16.4 Regulation of iron homeostasis in S. pombe;447
44.4.1;16.4.1 Fep1 and Php4 transcriptional repressors and target genes;447
44.4.2;16.4.2 Roles for Grx4 in regulation of Fep1 and Php4 activity;450
44.4.3;16.4.3 Molecular basis of iron-dependent control of Fep1 activity;452
44.4.4;16.4.4 Molecular basis of iron-dependent control of Php4 activity;453
44.5;16.5 Summary;454
45;Acknowledgments;455
46;References;455
47;17 Biogenesis of Fe-S proteins in mammals;461
47.1;17.1 Introduction;461
47.2;17.2 The Fe-S regulatory switch of IRP1;461
47.3;17.3 IRP2, a highly homologous gene, also post-transcriptionally regulates iron metabolism, but iron sensing occurs through the regulation of its degradation rather than through an Fe-S switch mechanism;465
47.4;17.4 Identification of the mammalian cysteine desulfurase and two scaffold proteins: implications for compartmentalization of the process;466
47.5;17.5 Sequential steps in Fe-S biogenesis – an initial Fe-S assembly process on a scaffold, followed by Fe-S transfer to recipient proteins, aided by a chaperone-co-chaperone system;467
47.6;17.6 Mitochondrial iron overload in response to defects in Fe-S biogenesis raises important questions about how mitochondrial iron homeostasis is regulated;470
47.7;17.7 Perspectives and future directions;471
48;References;472
49;18 Iron-sulfur proteins and human diseases;479
49.1;18.1 Introduction;479
49.2;18.2 Oxidative susceptibility of Fe-S proteins;480
49.2.1;18.2.1 Aconitases: targets of oxidative stress in disease and aging;482
49.3;18.3 Diseases associated with genetic defects in Fe-S proteins;485
49.3.1;18.3.1 Mitochondrial respiratory complexes and human diseases;485
49.3.2;18.3.2 FECH deficiency causes erythropoietic protoporhyria (MIM 177000);490
49.3.3;18.3.3 DNA repair Fe-S proteins and human disorders;491
49.4;18.4 Diseases associated with genetic defects in Fe-S cluster biogenesis;493
49.4.1;18.4.1 A GAA trinucleotide repeat expansion in FXN is the major cause of the neurodegenerative disorder Friedreich ataxia;496
49.4.2;18.4.2 Mutations in ABCB7 cause X-linked sideroblastic anemia with ataxia;500
49.4.3;18.4.3 Mutations in glutaredoxin 5 cause an autosomal recessive pyridoxine-refractory sideroblastic anemia;501
49.4.4;18.4.4 Mutations in ISCU cause myopathy with lactic acidosis (MIM 255125);502
49.4.5;18.4.5 NUBPL mutations cause childhood-onset mitochondrial encephalomyopathy and respiratory complex I deficiency (MIM252010);505
49.4.6;18.4.6 Mutations in NFU1 cause multiple mitochondrial dysfunctions syndrome 1 (MIM 605711);506
49.4.7;18.4.7 Mutations in BOLA3 cause multiple mitochondrial dysfunctions syndrome 2 (MIM 614299);509
49.4.8;18.4.8 IBA57 deficiency causes severe myopathy and encephalopathy;510
49.4.9;18.4.9 A mutation in ISD11 causes deficiencies of respiratory complexes;510
49.5;18.5 Fe-S cluster biogenesis and iron homeostasis;511
49.6;18.6 Therapeutic strategies;512
50;Acknowledgments;514
51;References;514
52;19 Connecting the biosynthesis of the molybdenum cofactor, Fe-S clusters, and tRNA thiolation in humans;537
52.1;19.1 Introduction;537
52.2;19.2 Pathways for the formation of Moco and thiolated tRNAs in humans;539
52.2.1;19.2.1 Moco biosynthesis in mammals;539
52.2.2;19.2.2 The role of tRNA thiolation in the cell;549
52.3;19.3 The connection between sulfur-containing biomolecules and their distribution in different compartments in the cell;551
52.3.1;19.3.1 Sulfur transfer in mitochondria;551
52.3.2;19.3.2 Sulfur transfer in the cytosol;553
52.3.3;19.3.3 Role of NFS1, ISD11, URM1, and MOCS2A in the nucleus;556
53;Acknowledgments;558
54;References;558
55;20 Iron-sulfur proteins and genome stability;565
55.1;20.1 Introduction;565
55.2;20.2 The importance of genome stability;565
55.3;20.3 Link between FeS cluster biogenesis and genome stability;566
55.4;20.4 FeS proteins in DNA replication;568
55.4.1;20.4.1 DNA primase and DNA polymerase a;569
55.4.2;20.4.2 DNA polymerases d and e;570
55.4.3;20.4.3 DNA2;571
55.5;20.5 FeS proteins in DNA repair;572
55.5.1;20.5.1 DNA glycosylases;573
55.5.2;20.5.2 The Rad3 family of helicases;575
55.6;20.6 Summary;579
56;References;579
57;21 Eukaryotic iron-sulfur protein biogenesis and its role in maintaining genomic integrity;565
57.1;21.1 Introduction;587
57.2;21.2 Biogenesis of mitochondrial Fe-S proteins;592
57.2.1;21.2.1 Step 1: De novo Fe-S cluster assembly on the Isu1 scaffold protein;592
57.2.2;21.2.2 Step 2: Chaperone-dependent release of the Isu1-bound Fe-S cluster;593
57.2.3;21.2.3 Step 3: Late-acting ISC assembly proteins function in [4Fe-4S] cluster synthesis and in target-specific Fe-S cluster insertion;595
57.3;21.3 The role of the mitochondrial ABC transporter Atm 1 in the biogenesis of cytosolic and nuclear Fe-S proteins and in iron regulation;598
57.4;21.4 The role of the CIA machinery in the biogenesis of cytosolic and nuclear Fe-S proteins;600
57.4.1;21.4.1 Step 1: The synthesis of a [4Fe-4S] on the scaffold complex Cfd1-Nbp35;600
57.4.2;21.4.2 Step 2: Transfer of the [4Fe-4S] cluster to target apo-proteins;600
57.5;21.5 Specialized functions of the human CIA-targeting complex components;601
57.5.1;21.5.1 Dedicated biogenesis of cytosolic and nuclear Fe-S proteins;601
57.5.2;21.5.2 The dual role of CIA2A in iron homeostasis;602
57.6;21.6 Fe-S protein assembly and the maintenance of genomic stability;603
57.6.1;21.6.1 Late-acting CIA factors in DNA metabolism;604
57.6.2;21.6.2 XPD and the Rad3 family of DNA helicases;605
57.6.3;21.6.3 Fe-S proteins involved in DNA replication;606
57.6.4;21.6.4 DNA glycosylases as Fe-S proteins;607
57.7;21.7 Biochemical functions of Fe-S clusters in DNA metabolic enzymes;607
57.8;21.8 Interplay among Fe-S proteins, genome stability, and tumorigenesis;609
57.9;21.9 Summary;611
58;Acknowledgments;612
59;References;612
60;22 Iron-sulfur cluster assembly in plants;623
60.1;22.1 Introduction;623
60.2;22.2 Iron uptake, translocation, and distribution;623
60.3;22.3 Fe-S cluster assembly;625
60.3.1;22.3.1 SUF system in plastids;627
60.3.2;22.3.2 ISC system in mitochondria;630
60.3.3;22.3.3 CIA system in cytosol;632
60.4;22.4 Regulation of cellular iron homeostasis by Fe-S cluster biosynthesis;634
60.5;22.5 Conservation of Fe-S cluster assembly genes across the green lineage;634
60.6;22.6 Potential significance to agriculture;636
61;Acknowledgments;637
62;References;637
63;23 Origin and evolution of Fe-S proteins and enzymes;643
63.1;23.1 Introduction;643
63.2;23.2 Fe-S chemistry and the origin of life;643
63.3;23.3 The ubiquity and antiquity of biological Fe-S clusters;646
63.4;23.4 Early energy conversion;650
63.5;23.5 Evolution of complex Fe-S cluster containing proteins;654
63.6;23.6 The path from minerals to Fe-S proteins and enzymes;656
64;References;657
65;Index;661


Tracey Rouault, NIH Bethesda, Maryland, USA



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.