E-Book, Englisch, 197 Seiten, E-Book
Roters / Eisenlohr / Bieler Crystal Plasticity Finite Element Methods
1. Auflage 2011
ISBN: 978-3-527-64209-0
Verlag: Wiley-VCH
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
in Materials Science and Engineering
E-Book, Englisch, 197 Seiten, E-Book
ISBN: 978-3-527-64209-0
Verlag: Wiley-VCH
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Autoren/Hrsg.
Weitere Infos & Material
Preface
INTRODUCTION TO CRYSTALLINE ANISOTROPY AND THE CRYSTAL PLASTICITY FINITE ELEMENT METHOD
PART I: Fundamentals
METALLURGICAL FUNDAMENTALS OF PLASTIC DEFORMATION
Introduction
Lattice Dislocations
Deformation Martensite and Mechanical Twinning
CONTINUUM MECHANICS
Kinematics
Mechanical Equilibrium
Thermodynamics
THE FINITE ELEMENT METHOD
The Principle of Virtual Work
Solution Procedure - Discretization
Non-Linear FEM
THE CRYSTAL PLASTICITY FINITE ELEMENT METHOD AS A MULTI-PHYSICS FRAMEWORK
PART II: The Crystal Plasticity Finite Element Method
CONSTITUTIVE MODELS
Dislocation Slip
Displacive Transformations
Damage
HOMOGENIZATION
Introduction
Statistical Representation of Crystallographic Texture
Computational Homogenization
Mean-Field Homogenization
Grain-Cluster Methods
NUMERICAL ASPECTS OF CRYSTAL PLASTICITY FINITE ELEMENT METHOD IMPLEMENTATIONS
General Remarks
Explicit Versus Implicit Integration Methods
Element Types
PART III: Application
MICROSCOPIC AND MESOSCOPIC EXAMPLES
Introduction to the Field of CPFE Experimental Validation
Stability and Grain Fragmentation in Aluminum under Plane Strain Deformation
Texture and Dislocation Density Evolution in a Bent Single-Crystalline Copper-Nanowire
Texture and Microstructure underneath a Nanoindent in a Copper Single Crystal
Application of a Nonlocal Dislocation Model Including Geometrically Necessary Dislocations to Simple Shear Tests of Aluminum Single Crystals
Application of a Grain Boundary Constitutive Model to Simple Shear Tests of Aluminum Bicrystals with Different Misorientation
Evolution of Dislocation Density in a Crystal Plasticity Model
Three-Dimensional Aspects of Oligocrystal Plasticity
Simulation of Recrystallization Using Micromechanical Results of CPFE Simulations
Simulations of Multiphase TRIP Steels
Damage Nucleation Example
The Grain Size-Dependence in Polycrystal Models
MACROSCOPIC EXAMPLES
Using Elastic Constants from Ab Initio Simulations for Predicting Textures and Texture-Dependent Elastic Properties of Beta-Titanium
Simulation of Earing during Cup Drawing of Steel and Aluminum
Simulation of Lankford Values
Virtual Material Testing for Sheet Stamping Simulations
OUTLOOK AND CONCLUSIONS
Preface
INTRODUCTION TO CRYSTALLINE ANISOTROPY AND THE CRYSTAL PLASTICITY FINITE ELEMENT METHOD
PART I: Fundamentals
METALLURGICAL FUNDAMENTALS OF PLASTIC DEFORMATION
Introduction
Lattice Dislocations
Deformation Martensite and Mechanical Twinning
CONTINUUM MECHANICS
Kinematics
Mechanical Equilibrium
Thermodynamics
THE FINITE ELEMENT METHOD
The Principle of Virtual Work
Solution Procedure - Discretization
Non-Linear FEM
THE CRYSTAL PLASTICITY FINITE ELEMENT METHOD AS A MULTI-PHYSICS FRAMEWORK
PART II: The Crystal Plasticity Finite Element Method
CONSTITUTIVE MODELS
Dislocation Slip
Displacive Transformations
Damage
HOMOGENIZATION
Introduction
Statistical Representation of Crystallographic Texture
Computational Homogenization
Mean-Field Homogenization
Grain-Cluster Methods
NUMERICAL ASPECTS OF CRYSTAL PLASTICITY FINITE ELEMENT METHOD IMPLEMENTATIONS
General Remarks
Explicit Versus Implicit Integration Methods
Element Types
PART III: Application
MICROSCOPIC AND MESOSCOPIC EXAMPLES
Introduction to the Field of CPFE Experimental Validation
Stability and Grain Fragmentation in Aluminum under Plane Strain Deformation
Texture and Dislocation Density Evolution in a Bent Single-Crystalline Copper-Nanowire
Texture and Microstructure underneath a Nanoindent in a Copper Single Crystal
Application of a Nonlocal Dislocation Model Including Geometrically Necessary Dislocations to Simple Shear Tests of Aluminum Single Crystals
Application of a Grain Boundary Constitutive Model to Simple Shear Tests of Aluminum Bicrystals with Different Misorientation
Evolution of Dislocation Density in a Crystal Plasticity Model
Three-Dimensional Aspects of Oligocrystal Plasticity
Simulation of Recrystallization Using Micromechanical Results of CPFE Simulations
Simulations of Multiphase TRIP Steels
Damage Nucleation Example
The Grain Size-Dependence in Polycrystal Models
MACROSCOPIC EXAMPLES
Using Elastic Constants from Ab Initio Simulations for Predicting Textures and Texture-Dependent Elastic Properties of Beta-Titanium
Simulation of Earing during Cup Drawing of Steel and Aluminum
Simulation of Lankford Values
Virtual Material Testing for Sheet Stamping Simulations
OUTLOOK AND CONCLUSIONS