Zur Prognose von Wechselkursen
Buch, Deutsch, 259 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 366 g
ISBN: 978-3-8244-7900-9
Verlag: Deutscher Universitätsverlag
Frank Richter zeigt, dass sich bessere Prognosen erstellen lassen, wenn statt eines einzelnen Modells eine Modellkombination verwendet wird, die die Stärken einzelner Modelle nutzt, ihre Schwächen hingegen weitestgehend ausschaltet. Er präsentiert Möglichkeiten der Kombination Künstlicher Neuronaler Netze und belegt anhand einer empirischen Untersuchung zur Vorhersage der Relation zwischen US-Dollar und DM die Vorteile von Kombinationsmodellen. Es zeichnet sich ab, dass für Wechselkursprognosen die Verwendung einer adäquaten Nutzenfunktion eine wichtige Rolle spielt.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1 Einleitung.- 1.1 Problemstellung.- 1.2 Kapitelübersicht.- 2 Prognose einer ökonomischen Zeitreihe.- 2.1 Prognosen und Modelle.- 2.2 Wechselkursprognosen.- 3 Optimale Modelle.- 3.1 Der bedingte Erwartungswert.- 3.2 Separierung des Inputraumes.- 3.3 Bias-Varianz-Dilemma.- 4 Fehlermaße.- 4.1 Der quadratische Fehler.- 4.2 Die mittlere absolute Abweichung.- 4.3 Sharpe-Ratio.- 5 Kombinationsmodelle.- 5.1 Kombination einzelner Modelle.- 5.2 Kombination von Modulen.- 5.3 Gruppen-Ansatz versus modularer Ansatz.- 6 Künstliche Neuronale Netze.- 6.1 Struktur und Funktionsweise von KNN.- 6.2 Abbildungskapazität.- 6.3 KNN zur Funktionsapproximation.- 6.4 Lernen mit KNN.- 6.5 Datenvorverarbeitung.- 6.6 Lernverfahren für KNN.- 6.7 Komplexitätskontrolle.- 7 Prognose einer Finanzzeitreihe mit KNN.- 7.1 Finanzzeitreihe USD/DEM.- 7.2 Monte-Carlo-Simulation.- 7.3 Inputs.- 7.4 Beispieldaten.- 7.5 Topologie.- 7.6 Lernverfahren.- 7.6.2 Abbruchkriterium.- 7.7 Performance-Maße für die Prognosemodelle.- 7.8 Ergebnisse des Trainings.- 7.9 Modellauswahl.- 7.10 Unterschiedliche Fehlermaße.- 7.11 Modellkombination mit einzelnen KNN.- 8 Mixture Density Networks.- 8.1 Inverse Probleme.- 8.2 Aufbau eines MDN-Modells.- 8.3 Beispielmodelle für ein inverses Problem.- 8.4 Modellierung USD/DEM mit MDN.- 9 Evolution von KNN und MDN.- 9.1 Genetische Algorithmen.- 9.2 Evolution von MDN-Modellen.- 9.3 Anwendung.- 10 Schlussbetrachtungen.