E-Book, Englisch, 560 Seiten, Web PDF
Reihe: IFAC Symposia Series
Rembold Robot Control 1988 (SYROCO'88)
1. Auflage 2014
ISBN: 978-1-4832-9876-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Selected Papers from the 2nd IFAC Symposium, Karlsruhe, FRG, 5-7 October 1988
E-Book, Englisch, 560 Seiten, Web PDF
Reihe: IFAC Symposia Series
ISBN: 978-1-4832-9876-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Containing 88 papers, the emphasis of this volume is on the control of advanced robots. These robots may be self-contained or part of a system. The applications of such robots vary from manufacturing, assembly and material handling to space work and rescue operations. Topics presented at the Symposium included sensors and robot vision systems as well as the planning and control of robot actions. Main topics covered include the design of control systems and their implementation; advanced sensors and multisensor systems; explicit robot programming; implicit (task-orientated) robot programming; interaction between programming and control systems; simulation as a programming aid; AI techniques for advanced robot systems and autonomous robots.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Robot Control 1988 (Syroco '88);4
3;Copyright Page;5
4;Table of Contents;10
5;Preface;8
6;PART I: PLENARY PAPERS;16
6.1;Chapter 1. Robot Applications in Germany;16
6.1.1;AREAS OF APPLIACTION OF INDUSRTIAL ROBOTS IN THE FEDERAL REPUBLIC OF GERMANY;17
6.1.2;FUTURE AREAS OF APPLIACTION;18
6.1.3;NEW AREAS OF APPLIACTION;18
6.1.4;EFFECTS OF ROBOT APPLICATIONS;19
6.2;Chapter 2. Machine Learning Strategies for Knowledge Acquisition in Autonomous Robot Systems;20
6.2.1;INTRODUCTION;20
6.2.2;BASIC STRUCTURE OF LEARNING SYSTEMS;22
6.2.3;INDUCTIVE LEARNING;23
6.2.4;LEARNING BY ANALOGY;24
6.2.5;NEURONAL LEARNING;24
6.2.6;EXPLANATION - BASED GENERALIZATION FOR DERIVING OPERATIONAL CONCEPTS;26
6.2.7;CONCLUSION;26
6.2.8;REFERENCES;27
6.3;Chapter 3. ESPRIT Initiatives in Robotics: Achievements and Perspectives;32
6.3.1;INTRODUCTION;32
6.3.2;COMPUTER INTEGRATED MANUFACTURING;32
6.3.3;ARCHITECTURE AND COMMUNICATIONS;33
6.3.4;ROBOTICS AND SHOP FLOOR SYSTEMS;33
6.3.5;ESPRIT II;33
6.3.6;CIM EUROPE;34
7;PART II: ROBOT CONTROL;36
7.1;Chapter 1. Modelling of Flexible Robots - An Introduction;36
7.1.1;1 Introduction;36
7.1.2;2 General considerations on flexibility;37
7.1.3;3 System modelling;38
7.1.4;4 Conclusions;40
7.1.5;5 References;41
7.2;Chapter 2. Control Concepts and Algorithms for Flexible Robots - An Expository Survey;44
7.2.1;INTRODUCTION;44
7.2.2;ROBOT CONTROL AND MEASUREMENT;44
7.2.3;CONTROL STRATEGIES FOR FLEXIBLE ROBOTS;45
7.2.4;KINEMATIC CONTROL;45
7.2.5;SYSTEM THEORETIC PROPERTIES, MODELLING AND CONTROL;45
7.2.6;CONTROLLER DFSIGN BASED ON SIMPLIFIED MODELS;46
7.2.7;LQ-DESIGN;47
7.2.8;INFLUENCE OF THE DESIGN METHOD ON DESIGN OBJECTIVES;47
7.2.9;SEPARATION OF EQUATIONS;47
7.2.10;NONLINEAR CONTROL LAWS;48
7.2.11;ADAPTIVE CONTROL;48
7.2.12;ACCOUNGING FOR ACTUATOR DYNAMICS;48
7.2.13;RARAMFTER IDENTIFICATION;48
7.2.14;ADDITIONAL ACGUATORS;48
7.2.15;CONCLUSIONS;49
7.2.16;REFERENCES;49
7.3;Chapter 3. Comparison of a Modal-expansion- and a Finite-element-model for a Two-beam Flexible Robot Arm;50
7.3.1;INTRODUCTION;50
7.3.2;MODELLING OF THE FLEXIBLE ROBOT ARM;50
7.3.3;EQUATIONS OF MOTION;51
7.3.4;NUMERICAL RESULTS;52
7.3.5;COMPARISON OF BOTH METHODS AND CONCLUSIONS;53
7.3.6;REFERENCES;53
7.4;Chapter 4. On Dynamics and Control of Elastic Robots;56
7.4.1;INTRODUCTION;56
7.4.2;MECHANICAL MODELS;56
7.4.3;CONTROL SCHEME FOR AN ELASTIC ROBOT;57
7.4.4;MEASUREMENTS;59
7.4.5;CONCLUSIONS;59
7.4.6;REFERENCES;60
7.5;Chapter 5. State Observation of Elastic Joint Robots;62
7.5.1;1. INTRODUCTION;62
7.5.2;2.MODEL;62
7.5.3;3. PRELIMINARY DISCUSSION;63
7.5.4;4. OBSERVER;64
7.5.5;5. CASE STUDY;65
7.5.6;6. CONCLUSIONS;66
7.5.7;REFERENCES;66
7.6;Chapter 6. Nonlinear Robot Arm Control Through Third Order Motor Model;68
7.6.1;1. INTRODUCTION;68
7.6.2;2. THIRD ORDER DYNAMIC MODEL OF ROBOT MANIPULATORS;69
7.6.3;3. LINEARIZATION OF CONTROL EQUATION;70
7.6.4;4. SIMULATIONS;70
7.6.5;5. CONCLUSION;72
7.6.6;References;72
7.7;Chapter 7. Time Decomposition Approach of Robot Control;74
7.7.1;1. INTRODUCTION;74
7.7.2;2. SINGULAR RERTURBATION ANALYSIS OF FULL ORDER ROBOT MODELS;74
7.7.3;3. COMPOSITE CONTROL FOR ROBOTS;75
7.7.4;4. SIMULATION RESULTS;76
7.7.5;CONCLUSION;77
7.7.6;REFERENCES;77
7.8;Chapter 8. A Runtime Monitoring System for Hybrid Manual/Autonomous Teleoperation;78
7.8.1;1 INTRODUCTION;78
7.8.2;2 HYBRID MANUAL/AUTONOMOUS TELEOPERATION;78
7.8.3;3 BILATERAL MASTER CONTROL DEVICE;79
7.8.4;4 SYSTEM CONFIGURATION;80
7.8.5;5 EXPERIMENTAL RESULTS;81
7.8.6;6 CONCLUSION;81
7.8.7;Acknowledgements;81
7.8.8;References;81
7.9;Chapter 9. Robot Manipulator Dynamics - Towards Better Computational Algorithms;84
7.9.1;INTRODUCTION;84
7.9.2;AN HYBRID COMPUTATIONAL ALGORITHM FOR ROBOT MANIPULATOR DYNAMICS;85
7.9.3;THE NEW ALGORITHM IMPLEMENTATION ON A 2R ROBOT MANIPULATOR;85
7.9.4;PARALLEL COMPUTATION;86
7.9.5;SUMMARY AND CONCLUSIONS;87
7.9.6;REFERENCES;87
7.10;Chapter 10. A Servo Command-based Flexible Servo System for Industrial Robots;90
7.10.1;INTRODUCTION;90
7.10.2;SERVO COMMAND-BASED FLEXIBLE SERVO SYSETM;91
7.10.3;ROBOT CONTROLLER USING FLEXIBLE SERVO SYSTEM;92
7.10.4;APPLICATION TO 6-AXIS INDUSTRIAL ROBOT;94
7.10.5;CONCLUSION;95
7.10.6;REFERENCES;95
7.11;Chapter 11. Position Control of Industrial Robots - Impacts, Concepts and Results;96
7.11.1;INTRODUCTION;96
7.11.2;IR MODELS;97
7.11.3;COMMERCIAL CONTROL CONCEPTS;98
7.11.4;PREVIOUS RESEARCH;98
7.11.5;ON-GOING RESEARCH AT THE ITTB;100
7.11.6;CONCLUSIONS;101
7.11.7;ACKNOWLEDGEMENTS;101
7.11.8;REFERENCES;101
7.12;Chapter 12. A Discrete Time Observer for a Robot having Elastic Joints;106
7.12.1;INTRODUCTION;106
7.12.2;DYNAMIC MODELING OF ROBOTS HAVING ELASTIC JOINTS;106
7.12.3;DISCRETE-TIME OBSERVERS;107
7.12.4;CASE STUDIES;109
7.12.5;SIMULATION RESULTS;110
7.12.6;CONCLUSIONS;111
7.12.7;REFERENCES;111
7.13;Chapter 13. Smooth Motion Generation for Two Coordinated Robot Arms;112
7.13.1;1. INTRODUCTION;112
7.13.2;2. GENERATION OF SPATIAL MOTIONS;113
7.13.3;3. CALCULATION OF TIGHTLY COORDINATED TRAJECTORIES;113
7.13.4;4. CALCULATION OF SMOOTHING FUNCTIONS;114
7.13.5;5. SMOOTHING FUNCTIONS WITH TIGHTLY COORDINATED MOTIONS;115
7.13.6;6. CONCLUSIONS;116
7.13.7;REFERENCES;116
7.14;Chapter 14. Accuracy-tests for Industrial Robots;118
7.14.1;INTRODUCTION;118
7.14.2;METHODS OF MEASUREMENT;118
7.14.3;OPTICAL SYSTEM FOR MEASURING THE ACCURACY OF INDUSTRIAL ROBOTS;119
7.14.4;SET UP OF THE MEASURING EQUIPMENT;120
7.14.5;THE MEASUREMENT OF CIRCULAR TRACKS;121
7.14.6;CONCLUSIONS;122
7.14.7;REFERENCES;122
7.15;Chapter 15. Problems and Prospects for Adaptive Robot Control Applications;124
7.15.1;INTRODUCTION;124
7.15.2;MODEL REFERENCE ADAPTIVE CONTROL METHOD;124
7.15.3;SELF TUNING ADAPTIVE CONTROLLERS;125
7.15.4;VARIABLE STRUCTURE CONTROLLERS;126
7.15.5;ONGOING WORK;127
7.15.6;REFERENCES;127
7.16;Chapter 16. Control of Flexible Robots using Generalized Nonlinear Decoupling;128
7.16.1;INTRODUCTION ;128
7.16.2;CONTROL LAW DESIGN;130
7.16.3;FEEDBACK GAINS COMPUTATION;130
7.16.4;SIMULATION RESULTS;131
7.16.5;CONCLUSION;133
7.16.6;ACKNOWLEDGEMENT;133
7.16.7;REFERENCES;133
7.17;Chapter 17. Characteristics and Mechanism Analysis of Parallel Link Manipulator;134
7.17.1;INTRODUCTION;134
7.17.2;KINEMATICS AND STATICS;134
7.17.3;COMPARISON BETWEEN SERIAL AND PARALLEL LINK MANIPULATORS;135
7.17.4;MECHANISM ANALYSIS OF PARALLEL LINK MANIPULATOR;136
7.17.5;OPTIMUM STRUCTURE;137
7.17.6;CONCLUSIONS;139
7.17.7;REFERENCES;139
7.18;Chapter 18. The Augmented Task Space Approach for Redundant Manipulator Control;140
7.18.1;INTRODUCTION;140
7.18.2;MANIPULATOR MODELING;141
7.18.3;TASK SPACE AUGMENTATION;141
7.18.4;CONTROL IN THE JOINT SPACE;142
7.18.5;CONTROL IN THE TASK SPACE;142
7.18.6;CONCLUSIONS;143
7.18.7;REFERENCES;143
7.19;Chapter 19. On Some Problems in Kinematic Control of Manipulation Robots: The
Structural Regularity Approach;146
7.19.1;INTRODUCTION;146
7.19.2;NOSIENCLATURE;147
7.19.3;STRUCTURAL REGULARITY;147
7.19.4;K I NEMATICS EVALUATION;148
7.19.5;AN EIAHPLE OF A 6R MR;149
7.19.6;TASK TRANSFORNATION;149
7.19.7;SOME COMMENTS;150
7.19.8;OFF-LINE PROGRAMMING;150
7.19.9;CONCLUSIONS;151
7.19.10;REFERENCES;151
7.20;Chapter 20. Force/Position Control of Manipulators in Task Space with Dominance in Force;152
7.20.1;INTRODUCTION;152
7.20.2;MANIPULATOR DYNAMICAL MODEL IN TASK ORIENTED SPACE;153
7.20.3;FORCE/1'OS1T10N PARALLEL CONTROL;153
7.20.4;CASE STUDY AND SIMULATION RESULT;155
7.20.5;CONCLUSIONS;155
7.20.6;ACIINOWLEDGEMENTS;156
7.20.7;REFERENCES;156
7.21;Chapter 21. Stochastic Force Control in a Robot Arm;160
7.21.1;INTRODUCTION;160
7.21.2;FORCE SENSING AND CONTROL: BACKGROUND;160
7.21.3;STOCHASTIC SCHEME FOR FORCE CONTROL;161
7.21.4;APPLICATION OF SFS TO EDGE FOLLOWING;162
7.21.5;PERFORMANCE OF THE SYSTEM;162
7.21.6;CONCLUSION AND FURTHER WORK;163
7.21.7;REFERENCES;163
7.22;Chapter 22. Robust Adaptive Control of Robot Manipulators;166
7.22.1;INTRODUCTION;166
7.22.2;SIGNAL ADAPTATION FOR AN AXIS MODELED BY A SECOND-ORDER SYSTEM;166
7.22.3;SOME SIMULATION RESULTS;168
7.22.4;MATHEMATICAL MODEL FOR ROBOTS WITH N DEGREE OF FREEDOM;168
7.22.5;CONTROL SYSTEM FOR M-DOF ROBOTS;169
7.22.6;DISCRETE ALGORITHMS;169
7.22.7;CONCLUSION;170
7.22.8;ACKNOWLEDGEMENTS;170
7.22.9;REFERENCES;170
7.23;Chapter 23. A Task Space Decoupling Approach to Hybrid Control of Manipulators;172
7.23.1;Introduction;172
7.23.2;Dynamic model of robot in contact;172
7.23.3;Task space description for hybrid control;173
7.23.4;Control design in the task space;174
7.23.5;Simulation results;175
7.23.6;Conclusions;177
7.23.7;References;177
7.23.8;Appendix;177
7.24;Chapter 24. Adaptive Hierarchical Control of Industrial Robots;178
7.24.1;INTRODUCTION;178
7.24.2;MATHEMATICAL MODEL OF THE ROBOT;178
7.24.3;LINEAR PARAMETER ESTIMATION OF THE ROBOT PARAMETERS;179
7.24.4;NONLINEAR ADAPTIVE CONTROL SYNTHESIS;181
7.24.5;SIMULATION RESULTS;182
7.24.6;CONCLUSION;182
7.24.7;REFERENCES;183
7.25;Chapter 25. Motion Control of Robotic Manipulator Based on Motor Program Learning;184
7.25.1;INTRODUCTION;184
7.25.2;PARADIGM OF LEARNING CONTROL;185
7.25.3;CONVERGENCE OF LEARNING CONTROL LAW;185
7.25.4;LEARNING SCHEME WHEN A LINEAR PART OF ROBOT DYNAMICS IS KNOWN;187
7.25.5;CONSTRUCTION OF INPUT PATTERNS BASED ON DIFFERENT TIME-SCALING;187
7.25.6;CONSTRUCTION OF INPU PATTERN BASED ON SUPERPOSITION;189
7.25.7;CONCLUSION;190
7.25.8;REFERENCES;190
7.26;Chapter 26. Robust Control of Robots with Joint Elasticities;192
7.26.1;INTRODUCTION;192
7.26.2;BRIEF SURVEY OF PREVIOUS WORK;192
7.26.3;A CLASS OF ELASTIC ROBOT MODELS;193
7.26.4;MODEL-BASED LINEAR AND NONLINEAR CONTROL;193
7.26.5;ROBUSTNESS ANALYSIS;194
7.26.6;A CASE STUDY;195
7.26.7;CONCLUDING REMARKS;197
7.26.8;REFERENCES;197
7.27;Chapter 27. On Robot Motion Control with Acceleration Feedback;198
7.27.1;INTRODUCTION;198
7.27.2;CONTROL CONCEPTS USING ACCELERATION FEEDBACK;198
7.27.3;CONTROLLER DESIGN;200
7.27.4;THE PROPER CHOICE OF;200
7.27.5;SIMULATION RESULTS;200
7.27.6;CONCLUSION;201
7.27.7;REFERENCES;201
7.27.8;APPENDIX 1;201
7.28;Chapter 28. A Learning Concept for Improving Robot Force Control;204
7.28.1;1. introduction;204
7.28.2;2. Presentation of the Learning Concept;205
7.28.3;3. Application to Force Control;206
7.28.4;4. Conclusion;209
7.28.5;Bibliography;209
7.29;Chapter 29. On Self-learning Control Strategy for Robot Manipulators;210
7.29.1;INTRODUCATION;210
7.29.2;THE CONTROL PROBLEM OF A ROBOT MANIPULATOR;210
7.29.3;SELF-LEARNING CONTROL STRATEGY FOR A ROBOT MANIPULATOR;211
7.29.4;DEVELOPMENT OF SELF-LEARNING CONTROL ALGORITHMS;211
7.29.5;CONCLUSION;214
7.29.6;REFERENCES;214
7.30;Chapter 30. Robust Tracking Control for Robots using the Sliding Mode. A Task-space Approach;216
7.30.1;INTRODUCTION;216
7.30.2;PROBLEM STATEMENT;216
7.30.3;TRACKING CONTROL ALGORITHM;218
7.30.4;SIMULATION RESULTS;219
7.30.5;CONCLUSION;221
7.30.6;REFERENCES;221
7.31;Chapter 31. Estimation of Friction Characteristics, Inertial and Coupling Coefficients in Robotic Joints Based on Current and Speed Measurements;222
7.31.1;1. Introduction;222
7.31.2;2. Modelling;222
7.31.3;3. Identification of the moment of inertia, coupling and gravity coefficients by crosscorrelation;223
7.31.4;4. Identification of friction characteristics by energy analysis;225
7.31.5;5. Experimental results;226
7.31.6;5. Conclusion;226
7.31.7;6. References;227
7.32;Chapter 32. Predictive Control of a Robotic Arm;228
7.32.1;INTRODUCTION;228
7.32.2;CARIMA MODEL FOR JOINT MOTION;228
7.32.3;PREDICTION SCHEME;229
7.32.4;CONTROL ALGORITHM;229
7.32.5;APPLICATION TO A MANIPULATOR;230
7.32.6;SIMULATION STUDIES;230
7.32.7;CONCLUSIONS;231
7.32.8;ACKNOWLEDGEMENT;231
7.32.9;REFERENCES;231
7.33;Chapter 33. On-line Identification of Inertia, Friction and Gravitational Forces Applied to an Industrial Robot;234
7.33.1;INTRODUCTION;234
7.33.2;THE IDENTIFICATION ALGORITHM;234
7.33.3;THE INDUSTRIAL ROBOT R106;235
7.33.4;PROCESS MODELS USED FOR IDENTIFICATION;236
7.33.5;PRACTICAL APPLICATION;237
7.33.6;IDENTIFICATION RESULTS;237
7.33.7;ROBOT CONTROL;239
7.33.8;REFERENCES;239
7.34;Chapter 34. Identification of Time Varying Parameters of the Robot Dynamics;240
7.34.1;INTRODUCTION;240
7.34.2;MODELLING OF THE ROBOT DYNAMICS;240
7.34.3;IDENTIFICATION OF TIME VARYING PARAMETERS;241
7.34.4;CONCLUSIONS;244
7.34.5;REFERENCES;244
7.35;Chapter 35. Optimal Control of a Robot with Electric Drive and Elastic Element;246
7.35.1;INTRODUCTION;246
7.35.2;STATEMENT OF THE PROBLEM;246
7.35.3;OPTIMAL CONTROL;248
7.35.4;NUMERICAL SIMULATION;249
7.35.5;CONCLUSIONS;249
7.35.6;REFERENCES;249
7.36;Chapter 36. Optimal Continuous-path Control for Manipulators with Redundant Degrees of Freedom;252
7.36.1;INTRODUCTION;252
7.36.2;STATEMENT OF THE PROBLEM;252
7.36.3;REDUNDANT DEGREES OF FREEDOM - KINEMATIC OPTIMIZATION;253
7.36.4;CARTESIAN DECOUPLING IN MACROMICRO MANIPULATOR CONTROL;253
7.36.5;OPTIMAL CONTROL OF MACRO-MICRO MANIPULATORS;254
7.36.6;APPLICATION TO AN EIGHT-LINK INDUSTRIAL R000T;255
7.36.7;CONCLUSION;257
7.36.8;ACKNOWLEDGEMENT;257
7.36.9;REFERENCES;257
7.37;Chapter 37. Real-time Implementation of Dynamic Control of Robot;258
7.37.1;INTRODUCTION;258
7.37.2;PREVIOUS WORK;258
7.37.3;RECALL ON TIC DYNAMIC DER NATION;259
7.37.4;THE DYNAMIC CONTROL IN THE JOINT SPACE;259
7.37.5;DYNAMIC CONTROL IN THE CARTESIAN SPACE;260
7.37.6;CALCULATION OF THE COMPONENTS OF THE CARTESIAN LAW;260
7.37.7;APPLICATION;261
7.37.8;SERVO LOOP PROGRAM FORTRAN language;262
7.37.9;RESULTS;262
7.37.10;CONCLUSION;263
7.37.11;REFERENCES;263
7.37.12;Acknowledgements;263
7.38;Chapter 38. Stability Analysis of Position-force Control using Linearized Cartesian Space Model;264
7.38.1;1. INTRODUCTION;264
7.38.2;2. KINEMATICS;264
7.38.3;3. CONSTRAINED DYNAMICS;265
7.38.4;4. LINEARIZED KINEMATICS;267
7.38.5;5. LINEARIZED DYNAMICS;267
7.38.6;6. STATE-SPACE MODEL;269
7.38.7;CONCLUSION;269
7.38.8;REFERENCES;269
8;PART III: MOBILE SYSTEMS;270
8.1;Chapter 1. Autonomous Mobile Robots;270
8.1.1;INTRODUCTION;270
8.1.2;HIERARCHICAL CONTROL STRUCTURE;270
8.1.3;HIERARCHICAL COORDINATOR;271
8.1.4;SIMULATION RESULTS;272
8.1.5;ACKNOWLEDGEMENT;275
8.1.6;REFERENCES;275
8.2;Chapter 2. Collision-free Path Planning Algorithm for Mobile Robot which Moves among Unknown Environment;276
8.2.1;INTRODUCTION;276
8.2.2;GENERAL DESCRIPTION AND DEFINITIONS;276
8.2.3;ENVIRONMENT SIMULATION;277
8.2.4;SENSORY DATA SIMULATION;277
8.2.5;FREE-SPACE CONFIGURATION;277
8.2.6;PATH PLANNING ALGORITHM;278
8.2.7;SCANNER POSITION CHOICE;279
8.2.8;IMPLEMENTATION;280
8.2.9;REFERENCES;280
8.3;Chapter 3. Path Assignment to a Set of Autonomous Guided Vehicles;282
8.3.1;INTRODUCTION;282
8.3.2;SAMPLED DATA CONTROL STRATEGY;282
8.3.3;PATH COMPUTING ALGORITHM;283
8.3.4;GLOBAL ASSIGNMENT PROCEDURE;283
8.3.5;SECTION ASSIGNMENT PROCEDURE;284
8.3.6;INTERFERENCE OF SEVERAL AG';285
8.3.7;CONCLUDING REMARKS;285
8.3.8;REFERENCES;285
8.4;Chapter 4. Environment Perception with a Laser Radar in a Fast Moving Robot;286
8.4.1;1. Introduction;286
8.4.2;2. MOBOT-III an Autonomous Mobile Robot;286
8.4.3;3. The Rotating Sensor Unit;287
8.4.4;4. Navigation Problems;288
8.4.5;5. Box-Feature;288
8.4.6;6. Environment Mapping;289
8.4.7;7. Conclusion;291
8.4.8;References;291
8.5;Chapter 5. Spatial Uncertainty Management for a Mobile Robot and its Role in Expectation-based Perception;294
8.5.1;1. Introduction;294
8.5.2;2. Related work;294
8.5.3;3. Uncertainty subsystem - An overview;295
8.5.4;4. Uncertainty map management;295
8.5.5;5. Landmark expectation;297
8.5.6;6. Examples;298
8.5.7;7. Summary;298
8.5.8;REFERENCES;299
8.6;Chapter 6. Sensor Model Based Preprocessing of 3-D Laser Range Image Data and Motion
Oriented Feature Extraction for Mobile Robot Applications;300
8.6.1;1. INTRODUCTION;300
8.6.2;2. THE LSR RANGE CAMERA;300
8.6.3;3. THE SENSOR MODEL;301
8.6.4;4. RAW IMAGE DATA PROCESSING;301
8.6.5;5. MOTION-ORIENTED FEATURE EXTRACTION;302
8.6.6;6. ORGANIZATION OF SENSOR DATA PROCESSING;303
8.6.7;7. CONCLUSION;304
8.6.8;REFERENCES;304
8.7;Chapter 7. External Linearization Control for an Omnidirectional Mobile Robot;308
8.7.1;Introduction;308
8.7.2;1. Robot kinematics;309
8.7.3;2. Robot dynamical equations;309
8.7.4;3. The control problem;310
8.7.5;4. Wheel position control;310
8.7.6;5. Velocity and orientation control;311
8.7.7;References;312
8.7.8;Appendix : Proof of lemma;312
8.8;Chapter 8. BARCS: Introducing Behavioural Concepts in Advanced Robots;314
8.8.1;INTRODUCTION;314
8.8.2;PROBLEM'S OVERVIEW;314
8.8.3;BARCS OPERATING PRINCIPLES;315
8.8.4;BARCS STRUCTURE;316
8.8.5;SIMULATION AND EXPERIMENTAL RESULTS;318
8.8.6;CONCLUSIONS;319
8.8.7;BIBLIOGRAPHY;319
9;PART III: SENSING;320
9.1;Chapter 1. Control Aspects of an Integrated Sensor Based Robot System with Novel Tactile Pads;320
9.1.1;INTRODUCTION;320
9.1.2;ROBOT CONTROL SYSTEM INTEGRATION;320
9.1.3;VISION/IMAGE PROCESSING;320
9.1.4;TACTILE SENSING;321
9.1.5;ADAPTIVE CONTROL;322
9.1.6;SIMULATION;323
9.1.7;CONCLUSIONS;323
9.1.8;ACKNOWLEDGEMENTS;323
9.1.9;REFERENCES;323
9.2;Chapter 2. Force Control of Robotic Manipulator using vss;326
9.2.1;INTRODUCTION;326
9.2.2;MODELLING OF THE SYSTEM WITH WORKPIECE DYNAMICS;326
9.2.3;IDENTIFICATION OF RARAMKI'hRS FOR THE UNKNOWN WORKPIECES;327
9.2.4;VSS APPROACH TO CONTROL SYSTEM DESIGN;329
9.2.5;SIMULATION RESULTS;330
9.2.6;CONCLUSION;330
9.2.7;REFERENCES;330
9.3;Chapter 3. Improved Tactile Sensors;332
9.3.1;INTRODUCTION;332
9.3.2;RESULTS AND DISCUSSION;332
9.3.3;CONCLUSIONS;336
9.3.4;ACKNOWLEDGEMENT;336
9.3.5;REFERENCES;337
9.4;Chapter 4. Sensor Integration in ESPRIT;338
9.4.1;INTRODUCTION;338
9.4.2;THE ESPRIT PROJECTS;338
9.4.3;ASPECTS OF SENSOR INTEGRATION;339
9.4.4;INTEGRATION OF SENSOR PROCESSING WITH ROBOT DECISION AND CONTROL;339
9.4.5;INTEGRATION OF CAD DATA WITH SENSOR PROCESSING;339
9.4.6;INTEGRATION OF MULTIPLE SENSOR INPUTS;340
9.4.7;PHYSICAL INTEGRATION OF SENSORS;340
9.4.8;INTEGRATION OF SENSOR HANDLING WITH THE PROGRAMMING ENVIRONMENT;341
9.4.9;INTERCONNECTION AND INTERFACING OF SENSORS AND CONTROLLERS;341
9.4.10;USER INTERFACE INTEGRATION;341
9.4.11;DISCUSSION;341
9.4.12;SOME POTENTIALLY USEFUL CONCEPTS;341
9.4.13;CONCLUSIONS;343
9.4.14;ACKNOWLEDGEMENTS;343
9.4.15;REFERENCES;343
9.5;Chapter 5. Description and Recognition Methods of Shape Distorted Objects for Robot Vision Systems;344
9.5.1;I. Introduction;344
9.5.2;II. Shape Description and Model Base;344
9.5.3;III. Boundary Recognition;346
9.5.4;IV. Experimental Results;348
9.5.5;IV. CONCLUSION;349
9.5.6;REFERENCE;349
9.6;Chapter 6. An Integrated Multisensor Robot System;350
9.6.1;INTRODUCTION;350
9.6.2;SYSTEM'S ARCHITECTURE;350
9.6.3;SENSORS AND VISION CONTROL UNITS;350
9.6.4;FORCE/TORQUE SENSOR;351
9.6.5;VISION SENSOR;352
9.6.6;TOUCH SENSOR;352
9.6.7;ROBOTS'S GRIPPER;352
9.6.8;THE LRS: LANGUAGE FOR SENSORIAL ROBOT;352
9.6.9;CONCLUSIONS;353
9.6.10;REFERENCES;353
9.7;Chapter 7. A Knowledge-based Method to Determine the Orientation of the Keysurface
Of an Object in Robot Manipulation;356
9.7.1;INTRODUCTION;356
9.7.2;ASSUMPTIONS;357
9.7.3;GENERATION OF KNOWLEDGE SOURCES;357
9.7.4;EXECUTION OF VISIBILITY RULES (CONTROL KNOWLEDGE);358
9.7.5;RESULTS & CONCLUSION;359
9.7.6;ACKNOWLEDGEMENTS;359
9.7.7;REFERENCES;359
9.8;Chapter 8. Motion Detection and Analysis - State of the Art and Some Requirements from Robotics;362
9.8.1;1 INTRODUCTION;362
9.8.2;2 MOTION DETECTION;362
9.8.3;3 RECOVERING STRUCTURE FROM MOTION;365
9.8.4;4 DIRECTED PERCEPTION;366
9.8.5;5 CONCLUSION;367
9.8.6;References;367
9.9;Chapter 9. A Real-time Knowledge Scheme for Sensory-controlled Robot Assembly Tasks;368
9.9.1;1. INTRODUCTION;368
9.9.2;2. HIERARCHICAL SYSTEM STRUCTURE;369
9.9.3;3. EXECUTION MODULE;370
9.9.4;4. KNOWLEDGEBASE;371
9.9.5;5. KNOWLEDGE PROCESSING CONCEPT;372
9.9.6;6. FIRST PROTOTYPE;373
9.9.7;7. CONCLUSIONS;373
9.9.8;8. ACKNOWLEDGEMENT;373
9.9.9;9. REFERENCES;373
9.10;Chapter 10. A Real-time Knowledge Scheme for Sensory-controlled Robot Assembly Tasks;368
9.10.1;1. INTRODUCTION;368
9.10.2;2. HIERARCHICAL SYSTEM STRUCTURE;369
9.10.3;3. EXECUTION MODULE;370
9.10.4;4. KNOWLEDGEBASE gy.;371
9.10.5;5. KNOWLEDGE PROCESSING CONCEPT;372
9.10.6;6. FIRST PROTOTYPE;373
9.10.7;7. CONCLUSIONS;373
9.10.8;8. ACKNOWLEDGEMENT;373
9.10.9;9. REFERENCES;373
10;PART IV: GRASPING AND FINE MANIPULATION;374
10.1;Chapter 1. Consideration of Velocity Terms in Finger-arm Coordination Motion Planning;374
10.1.1;INTRODUCTION;374
10.1.2;FINGER-ARM COORDINATION PATH PLANNING METHOD;375
10.1.3;APPLICATION TO PIANO PLAYING;377
10.1.4;CONCLUSION;379
10.1.5;REFERENCES;379
10.2;Chapter 2. Direct Compliance Control if Manipulator Arms - Basic Concept and Application Examples;380
10.2.1;INTRODUCTION;380
10.2.2;DCC PROPOSAL;381
10.2.3;COMPARISON WITH CONVENTIONAL APPROACH;381
10.2.4;APLICATIONS TO ARMS IN HORIZONTAL PLANE;382
10.2.5;CONCLUSION;385
10.2.6;REFERENCES;385
10.3;Chapter 3. Control Issues for a Flexure-suspension Three-DOF Robotic Fine Positionin Device;386
10.3.1;Introduction;386
10.3.2;Planar Fine Positioner Designs;386
10.3.3;Open-loop Characteristics;388
10.3.4;Conclusions;390
10.3.5;References;391
10.4;Chapter 4. Dual Mode Control Method of Micro-manipulator with Visual Feedback;392
10.4.1;INTRODUCTION;392
10.4.2;TELEOPERATION CONTROL MODE;392
10.4.3;AUTOMATIC CONTROL MODE;394
10.4.4;STRUCTURE OF MICRO-MANIPULATOR CONTROL SYSTEM;395
10.4.5;EXPERIMENTAL RESULTS;395
10.4.6;CONCLUSIONS;395
10.4.7;REFERENCES;395
10.5;Chapter 5. The Karlsruhe Hand;398
10.5.1;INTRODUCTION;398
10.5.2;THE MANIPULATION PROBLEM;398
10.5.3;THE MECHANICAL DESIGN;399
10.5.4;FRAMEWORK FOR THE HAND CONTROL;399
10.5.5;PROGRAMMING;400
10.5.6;THE HIGH-LEVEL CONTROL SYSTEM;401
10.5.7;THE LOW-LEVEL CONTROL SYSTEM;401
10.5.8;COMPUTER ARCHITECTURE;402
10.5.9;SENSOR STRUCTURE;402
10.5.10;CONCLUSION;403
10.5.11;REFERENCES;403
10.6;Chapter 6. Control System Design of a Dexterous Hand for Industrial Robots;404
10.6.1;INTRODUCTION;404
10.6.2;HAND MECHANICAL CONFIGURATION, SENSORIAL EQUIPMENT AND DRIVING SYSTEM;405
10.6.3;CONTROL STRATEGY;405
10.6.4;COMPUTATIONAL ARCHITECTURE;406
10.6.5;CAD TOOLS FOR TASK PLANNING;406
10.6.6;EXPERIMENTAL RESULTS;407
10.6.7;CONCLUDING REMARKS;407
10.6.8;ACKNOWLEDGMENTS;408
10.6.9;REFERENCES;408
10.7;Chapter 7. Robotic Grasping: How to Determine Contact Positions;410
10.7.1;INTRODUCTION;410
10.7.2;ASSUMPTIONS AND METHODOLOGY;410
10.7.3;AUTOEQUILIBRATED GRASP;411
10.7.4;DISTURBED GRASP;412
10.7.5;CONCLUSIONS;414
10.7.6;ACKNOWLEDGEMENT;414
10.7.7;REFERENCES;414
10.8;Chapter 8. Artificial Muscles as Robotic Actuators;416
10.8.1;INTRODUCTION;416
10.8.2;MATHEMATICAL MODEL;416
10.8.3;DESIGN STRATEGY;417
10.8.4;DETERMINATION OF THE DIFFUSION COEFFICIENT;417
10.8.5;CONTROL OF ROBOTIC FINGER;417
10.8.6;SIMULATOR TEST SEQUENCE;418
10.8.7;CONCLUSIONS;418
10.8.8;REFERENCES;419
11;PART V: ROBOT PROGRAMMING AND SIMULATION;422
11.1;Chaopter 1. Real-time Collision Avoidance for Kinematically Redundant Manipulators;422
11.1.1;1 Introduction;422
11.1.2;2 Data structures;423
11.1.3;3 Collision avoidance;423
11.1.4;4 Computing the Cj_n;423
11.1.5;5 Test by simulation;425
11.1.6;6 Conclusion;426
11.1.7;7 References;426
11.2;Chapter 2. Operational Control for Robot Integration into CIM and its Applications;428
11.2.1;1 ROBOTS IN CIM SYSTEMS;428
11.2.2;2 OVERVIEW OF ESPRIT PROJECT 623;428
11.2.3;3 EXAMPLES OF INDUSTRIAL APPLICATIONS;429
11.2.4;4 SUMMARY AND OUTLOOK;430
11.2.5;REFERENCES;430
11.3;Chapter 3. Motion Planning Algorithms for Mechanical Assemblies;434
11.3.1;1. Introduction.;434
11.3.2;2. The WI Modelling System.;435
11.3.3;3. Robot motion planners.;436
11.3.4;4. The Collision Detection.;438
11.3.5;5. Discussion.;439
11.3.6;References;439
11.4;Chapter 4. AUTOFIX: A Task Level Robot Programming System for Automated Fixturing;440
11.4.1;Introduction;440
11.4.2;The Scope of AUTOFIX;440
11.4.3;An Overview of AUTOFIX;441
11.4.4;Bolt Insertion Planning;442
11.4.5;Path Planning;443
11.4.6;Grasp Planning;443
11.4.7;Nut Fastening Planning;444
11.4.8;Conclusion;444
11.4.9;References;444
11.5;Chapter 5. Off-line Programming of Exception Handling Strategies;446
11.5.1;INTRODUCTION;446
11.5.2;OFF-LINE PROGRAMMING AND EXCEPTION HANDLING: STATE OF THE ART;447
11.5.3;PROGRAMMING MODEL;448
11.5.4;OFF-LINE PROGRAMMING SYSTEM;449
11.5.5;PROJECT STATUS;450
11.5.6;CONCLUSIONS AND FUTURE WORK;450
11.5.7;ACKNOWLEDGEMENTS;450
11.5.8;REFERENCES;450
11.6;Chapter 6. Robot Simulation and Programming System;452
11.6.1;INTRODUCTION;452
11.6.2;SYSTEM OUTLINE;453
11.6.3;MODELLING MODE;454
11.6.4;PROGRAMMING;455
11.6.5;SIMULATION MODE;456
11.6.6;EXAMPLE;457
11.6.7;CONCLUSION;457
11.6.8;REFERENCES;457
11.7;Chapter 7. Knowledge Based Off-line Programming of Industrial Robots;458
11.7.1;INTRODUCTION;458
11.7.2;REALIZED OFF-LINE PROGRAMMING SYSTEM;458
11.7.3;INTERACTIVE TASK-ORIENTED PROGRAMMING;459
11.7.4;KNOWLEDGE BASED APPROACH;460
11.7.5;REALIZATION CONCEPT;461
11.7.6;CONCLUSION;463
11.7.7;REFERENCES;463
11.8;Chapter 8. POLROB - A Manipulator Level Programming Language;468
11.8.1;INTRODUCTION;468
11.8.2;CONCEPT OF DATA;468
11.8.3;CONCEPT OF ACTION;470
11.8.4;INTERACTIVE TEACHING SYSTEM;472
11.8.5;CONCLUS~ONS;473
11.8.6;REFFRENCES;473
11.9;Chapter 9. Robot System and Programming Environment for Teaching Robotics;474
11.9.1;INTRODUCTION;474
11.9.2;MANIPULATOR DESIGN;474
11.9.3;THE ARCHITECTURE AND OPERATION OF THE CONTROL SYSTEM;475
11.9.4;PROGRAMMING ENVIRONMENT FOR ROBOT CONTROL AND TEACHING ROBOTICS;476
11.9.5;ROBOT CONTROL USING ON—LINE ROBOT PROGRAMMING MODULE;476
11.9.6;TEACHING ROBOTICS WITH EDUCATIONAL ROBOT;477
11.9.7;REFERENCES;477
11.10;Chapter 10.CAD-based Robot Planning and Control;480
11.10.1;INTRODUCTION;480
11.10.2;ROBOT TASK PLANNING AND CAD;480
11.10.3;A DEDICATED OFF-LINE PROGRAMPMING SYSTEM FOR WELD PLANNING;481
11.10.4;ROBOT CONTROL SYSTEM;483
11.10.5;CONCLUSIONS;483
11.10.6;REFERENCES;484
11.11;Chapter 11. A 3D Closest Pair Algorithm and its Applications to Robot Motion Planning;486
11.11.1;INTRODUCTION;486
11.11.2;MODELING;486
11.11.3;FINDING THE CLOSEST PAIR OF POINTS;489
11.11.4;EXPERIMENTAL RESULTS;490
11.11.5;DISCUSSIONS;491
11.11.6;CNONCLUSIONS;493
11.11.7;REFERENCES;493
11.11.8;APPENDIX I;493
11.12;Chapter 12. An Efficient Formulation for the Dynamic Simulation of Robots;496
11.12.1;1. INTRODUCTION;496
11.12.2;2. FORMULATION OF THE INEATIA MATRIX;496
11.12.3;3. ALGORITHM;497
11.12.4;4. GENERAL CHAIN WITH A TREE STRUCTURE;498
11.12.5;5. LINEAR EQUATION SOLVERS;499
11.12.6;5. CONCLUSIONS;499
11.12.7;REFERENCES;500
11.13;Chapter 13. Requirements for Advanced Graphic Robot Programming Systems;502
11.13.1;INTRODUCTION;502
11.13.2;SYSTEM DESCRIPTION;503
11.13.3;SIMULATION OF WORK CELLS;503
11.13.4;MODELING;503
11.13.5;GRAPHIC ROBOT PROGRAMMING;505
11.13.6;DELAY 0.1 MOVES approach_location SPEED 100, ALWAYS;506
11.13.7;CONCLUSION;507
11.13.8;REFERENCES;507
11.14;Chapter 14. A Reasoning System for Solid Modeling Techniques Applicable to Robotics;508
11.14.1;INTRODUCTION;508
11.14.2;THE FRAMEWORK FOR REASONING;509
11.14.3;REASONING SYSTEM FOR ROBOTIC APPLICATIONS;511
11.14.4;CONCLUSION;512
11.14.5;REFERENCES;512
11.15;Chapter 15. Simulation of Vision in Robot Applications;514
11.15.1;INTRODUCTION;514
11.15.2;MODELING;514
11.15.3;SYSTEM OVERVIEW;516
11.15.4;IMPLEMENTATION OF THE CAMERA SIMUALTION;518
11.15.5;PICTURE PROCESSING;518
11.15.6;CONCLUSION;519
11.15.7;RESERENCES;519
11.16;Chapter 16. A Sensitivity Approach to Optimal Spline Robot Trajectories;520
11.16.1;Introduction;520
11.16.2;Spline robot trajectories;521
11.16.3;Optimization problem formulation;521
11.16.4;A solution algorithm;522
11.16.5;Sensitivity analysis;522
11.16.6;Numerical simulations;523
11.16.7;Conclusions;524
11.16.8;References;524
11.16.9;Appendix;524
11.17;Chapter 17. Ability of a Robot to Move Between Two Points within Cartesian Free Workspace
with an Encumbered Environment;526
11.17.1;INTRODUCTION;526
11.17.2;DEFINITIONS;526
11.17.3;CHARACTERIZATION OF THE ROBOT ABILITY TO MOVE THROUGH Ca;527
11.17.4;ALGORITHMIC ANALYSIS OF THE ROBOT ABILITY TO TRAVEL THROUGH Ca;527
11.17.5;RESULTS;528
11.17.6;CONCLUSION;528
11.17.7;REFERENCES;529
11.18;Chapter 18. A Practical Approach for Planning and Realization of Optimal Trajectories for Industrial Robots;532
11.18.1;INTRODUCTION;532
11.18.2;COMPARISON OF OPTIMAL' PLANNING METHODS;532
11.18.3;SELECTED NUMERICAL CONCEPT;533
11.18.4;Conclusion;534
11.18.5;References;534
11.19;Chapter 19. On the Optimal Path Generation for Redundant Robot Manipulators;538
11.19.1;1. Introduction;538
11.19.2;2. The Inverse Kinematics Problem;539
11.19.3;3. A Singularities Avoidance Approach;539
11.19.4;4. A Local OPPP Formulation;540
11.19.5;5. A Global Formulation;541
11.19.6;6. Conclusions;543
11.19.7;References;543
11.20;Chapter 20. Analytic Formulation if the Principle of Increasing Precision with Decreasing
Intelligence for Intelligent Machines;544
11.20.1;1. INTRODUCTION;544
11.20.2;2. THE MATHEMATICAL THEORY OF INTELLIGENT CONTROLS;544
11.20.3;3. KNOWLEDGE FLOW AND THE PRINCIPLE OF IPDI;545
11.20.4;4. THE ANALYTIC FORMULATION OF THE IPDI;546
11.20.5;5. A CASE STUDY: THE DERIVATION OF THE BOLTZMANN MACHINE;547
11.20.6;6. APPLICATION TO ROBOTIC SYSTEMS;548
11.20.7;ACKNOWLEDGEMENT;548
11.20.8;REFERENCES;548
11.21;Chapter 21. Advanced Carrier Systems and Telerobotics;550
11.21.1;INTRODUCTION;550
11.21.2;DESCRIPTION OF ADVANCED TELEROBOTICS SYSTEMS;550
11.21.3;BASIC COMMON CONCEPTS;551
11.21.4;CONCLUSION;553
11.21.5;REFERENCES;553
11.22;Chapter 22. Robotic Arc Welding - Programming and Control;556
11.22.1;INTRODUCTION;556
11.22.2;HIERARCHICAL CONTROL;556
11.22.3;CORRECTION OF POSITIONAL ERRORS;558
11.22.4;THE KINEMATICS OF A POSITIONER;558
11.22.5;DISCUSSION;561
11.22.6;CONCLUSIONS;561
11.22.7;REFERENCES;561
12;Author Index;562
13;Keyword Index;564