Rauhut / Foucart | A Mathematical Introduction to Compressive Sensing | Buch | 978-0-8176-4947-0 | sack.de

Buch, Englisch, 625 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 10815 g

Reihe: Applied and Numerical Harmonic Analysis

Rauhut / Foucart

A Mathematical Introduction to Compressive Sensing


2013
ISBN: 978-0-8176-4947-0
Verlag: Springer

Buch, Englisch, 625 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 10815 g

Reihe: Applied and Numerical Harmonic Analysis

ISBN: 978-0-8176-4947-0
Verlag: Springer


At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians.

A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

Rauhut / Foucart A Mathematical Introduction to Compressive Sensing jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


1 An Invitation to Compressive Sensing.- 2 Sparse Solutions of Underdetermined Systems.- 3 Basic Algorithms.- 4 Basis Pursuit.- 5 Coherence.- 6 Restricted Isometry Property.- 7 Basic Tools from Probability Theory.- 8 Advanced Tools from Probability Theory.- 9 Sparse Recovery with Random Matrices.- 10 Gelfand Widths of l1-Balls.- 11 Instance Optimality and Quotient Property.- 12 Random Sampling in Bounded Orthonormal Systems.- 13 Lossless Expanders in Compressive Sensing.- 14 Recovery of Random Signals using Deterministic Matrices.- 15 Algorithms for l1-Minimization.- Appendix A Matrix Analysis.- Appendix B Convex Analysis.- Appendix C Miscellanea.- List of Symbols.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.