Buch, Englisch, 784 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 1167 g
A History of Arabic Sciences and Mathematics Volume 3
Buch, Englisch, 784 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 1167 g
Reihe: Culture and Civilization in the Middle East
ISBN: 978-0-8153-4876-4
Verlag: Routledge
This volume examines the increasing tendency, after the ninth century, to explain mathematical problems inherited from Greek times using the theory of conics. Roshdi Rashed argues that Ibn al-Haytham completes the transformation of this ‘area of activity,’ into a part of geometry concerned with geometrical constructions, dealing not only with the metrical properties of conic sections but with ways of drawing them and properties of their position and shape.
Including extensive commentary from one of world’s foremost authorities on the subject, this book contributes a more informed and balanced understanding of the internal currents of the history of mathematics and the exact sciences in Islam, and of its adaptive interpretation and assimilation in the European context. This fundamental text will appeal to historians of ideas, epistemologists and mathematicians at the most advanced levels of research.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Geschichte der Mathematik
- Geisteswissenschaften Geschichtswissenschaft Alte Geschichte & Archäologie Mittelalterliche, neuzeitliche Archäologie (Europa)
- Geisteswissenschaften Geschichtswissenschaft Weltgeschichte & Geschichte einzelner Länder und Gebietsräume Geschichte einzelner Länder Naher & Mittlerer Osten
- Mathematik | Informatik Mathematik Mathematik Allgemein Philosophie der Mathematik
Weitere Infos & Material
Introduction: Conic sections and geometrical constructions Chapter 1: Theory of conics and geometrical constructions: 'completion of the conics' Chapter 2:Correcting the Bana Masa's Lemma for Apollonius' conics Chapter 3: Problems of geometrical construction Chapter 4: Practical Geometry: Measurement Appendix 1: A Research Tradition: the regular heptagon Appendix 2: Sinan ibn Al-Fati and Al-Qabisi:Optical Mensuration Supplementary notes Bibliography Indexes