Ramamoorty | Automation and Instrumentation for Power Plants | E-Book | sack.de
E-Book

E-Book, Englisch, 276 Seiten, Web PDF

Reihe: IFAC Symposia Series

Ramamoorty Automation and Instrumentation for Power Plants

Selected Papers from the IFAC Symposium, Bangalore, India, 15-17 December 1986
1. Auflage 2016
ISBN: 978-1-4832-9888-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Selected Papers from the IFAC Symposium, Bangalore, India, 15-17 December 1986

E-Book, Englisch, 276 Seiten, Web PDF

Reihe: IFAC Symposia Series

ISBN: 978-1-4832-9888-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



An analysis of power systems, control hardware, modelling and simulation, instrumentation, and computers and distributed systems. The stability of plants and their interaction in a multi-machine system is also discussed, as well as an analysis of the values of LOFT ATWS EVENT for PWR and the new algorithm of on-line ELD for thermal power plants.

Ramamoorty Automation and Instrumentation for Power Plants jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover
;1
2;Automation and Instrumentation for Power Plants;4
3;Copyright Page
;5
4;Table of Contents;8
5;CHAPTER 1. RECENT TRENDS IN POWER PLANT CONTROL;10
6;CHAPTER 2. COMPUTER-AIDED CONTROL SYSTEM DESIGN (CACSD): SOME PERSPECTIVES;14
6.1;1. INTRODUCTION;14
6.2;2. EARLY CACSD PACKAGES;14
6.3;3. LQG DESIGNS;14
6.4;4. INTEGRATED DESIGN PACKAGES;14
7;CHAPTER 3. HYDROELECTRIC POWER STATION CONTROL SYSTEMS;16
7.1;Summary;16
7.2;1. Background;16
7.3;2. Organizational Structure;16
7.4;3. Power Station Ranking;17
7.5;4. Organization of Operation;17
7.6;5. First-Tier Systems with Conventional Technology;17
7.7;6. First-Tier Automatic System Using Digital Technology;18
7.8;7. Speed Governing;19
7.9;8. Voltage Regulation;19
7.10;9. Second-Tier Systems;20
7.11;10. Third-Tier Automatic Systems: Catchment Control Centers;20
7.12;11. Automatic Spillway Operation Systems;22
8;CHAPTER 4. A DISTRIBUTED CONTROL AND MONITORING SYSTEM FOR NUCLEAR POWER PLANTS;24
8.1;GENERAL;24
8.2;DESIGN BASIS;24
9;CHAPTER 5. RECENT TRENDS IN DISTRIBUTED PROCESS CONTROL COMPUTERS;26
9.1;RECENT TRENDS IN DISTRIBUTED PROCESS CONTROL COMPUTERS;26
9.2;INTRODUCTION;26
9.3;TRENDS IN COMPUTER HARDWARE;26
9.4;SOFTWARE TRENDS;26
9.5;SYSTEM TRENDS;27
9.6;TRENDS IN COMPUTER CONTROL SYSTEMS;27
9.7;RELIABILITY AND SAFETY;27
9.8;SUMMARY AND CONCLUSIONS;28
9.9;REFERENCES;28
10;CHAPTER 6. ADVANCED DIAGNOSTIC SYSTEMS FOR THERMOELECTRIC PLANTS OPERATION;32
10.1;1. INTRODUCTION;32
10.2;SYSTEM ARCHITECTURE;32
10.3;DIAGNOSTIC ORIENTED ON LINE FUNCTIONS;34
10.4;4. DEVELOPMENT OF DIAGNOSTICAL FUNCTIONS;36
10.5;CONCLUSIONS;36
10.6;REFERENCES;36
11;CHAPTER 7. ON-LINE POWER SYSTEM TOPOLOGICAL OBSERVABILITY ANALYSIS ALGORITHMS: A COMPARATIVE STUDY;40
11.1;ABSTRACT;40
11.2;1. INTRODUCTION;40
11.3;2. TOPOLOGICAL OBSERVABILITY: A THEORETICAL BACKGROUND;41
11.4;3. NETWORK NODES VS. MEASUREMENT SET: DEFINITIONS;41
11.5;4. MAPLE LEAF ALGORITHM FOR TOPOLOGICAL OBSERVABILITY ANALYSIS;42
11.6;5. AN EXAMPLE AND TEST RESULTS;44
11.7;6. ALGORITHMS FOR POWER SYSTEM OBSERVABILITY ANALYSIS: A COMPARATIVE STUDY;44
11.8;7. CONCLUSION;46
11.9;ACKNOWLEDGMENT;46
11.10;REFERENCES;47
12;CHAPTER 8. DECOUPLED STATE-ESTIMATION IN ENERGY CONTROL CENTRES;48
12.1;ABSTRACT;48
12.2;1. INTRODUCTION;48
12.3;2. POWER SYSTEM MEASUREMENTS;49
12.4;3. STATE ESTIMATOR IN ENERGY CONTROL CENTRES;50
12.5;4. SIMULATION RESULTS;50
12.6;5. DISCUSSION;52
12.7;6. CONCLUSIONS;52
12.8;7. ACKNOWLEDGEMENT;52
12.9;8. REFERENCES;52
12.10;APPENDIX I. SINGULAR VALUE DECOMPOSITION (SVD);53
12.11;APPENDIX II;53
12.12;APPENDIX III: COMPUTER-ALGORITHM STEPS;54
13;CHAPTER 9. THE REALISATION OF DECENTRALISED CONTROL FOR LARGE-SCALE POWER SYSTEMS;56
13.1;Abstract;56
13.2;1. INTRODUCTION;56
13.3;2. COHERENCY BASED AGGREGATION;56
13.4;3. DECENTRALIZED CONTROLLERS AND WEIGHTING MATRICES;57
13.5;4. ILLUSTRATIVE EXAMPLE;59
13.6;5. CONCLUSION;59
13.7;ACKNOWLEDGMENT;59
13.8;REFERENCES;59
14;CHAPTER 10. DETERMINATION OF TRANSIENT STABILITY-CONSTRAINED PLANT GENERATION LIMITS;62
14.1;I. INTRODUCTION;62
14.2;II. THE APPROACH;62
14.3;III. POWER SYSTEM MODEL;62
14.4;IV. THE PROCEDURE;63
14.5;V. RESULTS AND DISCUSSION;64
14.6;VI. CONCLUSION;66
14.7;ACKNOWLEDGEMENT;66
14.8;REFERENCES;66
15;CHAPATER 11. VARIABLE STRUCTURE CONTROLLER FOR DIRECT CYCLE BOILING WATER REACTOR POWER PLANT;68
15.1;SUMMARY;68
15.2;1. INTRODUCTION;68
15.3;2. SYSTEM MODEL;69
15.4;3. VARIABLE STRUCTURE SYSTEMS;71
15.5;4. SIMULATION RESULTS;71
15.6;5. CONCLUSIONS;72
15.7;ACKNOWLEDGEMENT;73
15.8;REFERENCES;73
15.9;NOMENCLATURE;73
16;CHAPTER 12. ANALYSIS OF A LOFT ATWS EVENT FOR PWR USING THE AUTOREGRESSIVE MODEL;82
16.1;Abstract;82
16.2;INTRODUCTION;82
16.3;A BRIEF DESCRIPTION OF LOFT CORE AND L9-3 EXPERIMENT;82
16.4;ANALYTICAL METHOD;83
16.5;EXAMPLES OF MODELING;84
16.6;APPLICATION OF MODEL FOR FORCASTING;87
16.7;CONCLUSION;87
16.8;REFERENCE;87
17;CHAPTER 13. A NEW ALGORITHM OF ON-LINE ELD FOR THERMAL POWER PLANTS;90
17.1;Abstract;90
17.2;Keywords;90
17.3;1 INTRODUCTION;90
17.4;2 DESCRIPTION OF UPPER LEVEL IN PROPOSED ALGORITHM;91
17.5;3. DISCRIPTION OF LOWER LEVEL IN PROPOSED ALGORITHM;95
17.6;4. SIMULATION;96
17.7;5 CONCLUSION;98
17.8;Reference;98
18;CHAPTER 14. INTEGRATED APPROACH TO COGENERATION PLANNING, CONTROL AND MANAGEMENT;100
18.1;ABSTRACT;100
18.2;1. INTRODUCTION;100
18.3;2. COGENERATION - WHAT, WHY AND HOW?;100
18.4;3. PLANNING OF COGENERATION;101
18.5;4. COMPUTER-AIDED PLANNING, CONTROL AND MANAGEMENT (CAPCM);102
18.6;5. INTEGRATED APPROACH;102
18.7;6. CONCLUSIONS;103
18.8;7. REFERENCES;103
19;CHAPTER 15. AN IMPLICIT SELF-TUNING REGULATOR AS A POWER SYSTEM STABILIZER;110
19.1;ABSTRACT;110
19.2;INTRODUCTION;110
19.3;GENERALIZED SELF-TUNING CONTROL;110
19.4;SYSTEM MODEL AND PARAMETER IDENTIFICATION;111
19.5;RESULTS;111
19.6;CONCLUSIONS;112
19.7;REFERENCES;112
19.8;APPENDIX;112
20;CHAPTER 16. AUTOMATIC POWER CONTROL SYSTEM OF DHRUVA NUCLEAR REACTOR;116
20.1;ABSTRACT;116
20.2;1.0 INTRODUCTION;116
20.3;2.0 INSTRUMENTATION SCHEME;116
20.4;3.0 REACTOR POWER CONTROL SCHEME;117
20.5;4.0 CONTROL SYSTEM STABILITY ANALYSIS;118
20.6;5.0 CONCLUSION;118
20.7;6.0 REFERENCES;118
21;CHAPTER 17. MICROCOMPUTER BASED ADAPTIVE STABILISER FOR STATIC VAR COMPENSATORS IN POWER SYSTEMS;122
21.1;ABSTRACT;122
21.2;INTRODUCTION;122
21.3;STATIC VAR COMPENSATOR MODEL;122
21.4;DISCRETE VERSION OF THE STATIC VAR COMPENSATOR MODEL;123
21.5;ADAPTIVE STABILISER ALGORITHM;123
21.6;POWER SYSTEM MODEL;124
21.7;RESULTS;124
21.8;CONCLUSIONS;124
21.9;Acknowledgements;125
21.10;REFERENCES;125
21.11;APPENDICIES;125
21.12;APPENDIX I;125
21.13;Appendix II;126
22;CHAPTER 18. MEASUREMENT BASED CONTROL OF POWER SYSTEMS;130
22.1;INTRODUCTION;130
22.2;SYNCHRONOUS PHASOR MEASUREMENT;130
22.3;STATIC STATE ESTIMATION OF POWER SYSTEMS;131
22.4;ESTIMATION OF GENERATOR INTERNAL STATES;131
22.5;CONTROL OF PLANTS AND SYSTEMS;132
22.6;COMMUNICATION NEEDS;133
22.7;CONCLUSIONS;133
22.8;REFERENCES;133
23;CHAPTER 19. COMPUTER BASED INSTRUMENTATION FOR NUCLEAR POWER STATION;134
23.1;1. Introduction;134
23.2;2. Data Logging Sub-systems;134
23.3;3. Disturbance Analyser;135
23.4;4. Channel Temp.Monitoring Sub-systems;136
23.5;5. Recording Annunciation sub-System;137
23.6;6. Window Annunciator Logging sub-system;139
23.7;7. Real time Master-Slave clock sub-system;139
23.8;8. Integrated System at a glance;140
24;CHAPTER 20. MICROPROCESSOR BASED WINDING FAULT DETECTION SYSTEM USING THE INDUCTANCE SIGNATURE TECHNIQUE;142
24.1;SUMMARY;142
24.2;1. INTRODUCTION;142
24.3;2. PRINCIPLE OF INDUCTANCE SIGNATURE TECHNIQUE;143
24.4;3. DESCRIPTION OF THE SYSTEM;143
24.5;4. LABORATORY EXPERIMENTS WITH MANUALLY OPERATED UNIT;144
24.6;5. FIELD TESTS;145
24.7;6. INFERENCE;146
24.8;7. FUTURE PROGRAMME;146
24.9;8. COLLUSIONS;146
24.10;9. ACKNOWLEDGEMENTS;146
24.11;10. REFERENCES;147
25;CHAPTER 21. A SEPARATE EARTHING NETWORK FOR I & C CABLES AND EQUIPMENT IN THE CONTEXT OF SIGNAL INTEGRITY AND EMI IN A POWER STATION;148
25.1;Abstract;148
25.2;INTRODUCTION;148
25.3;2 THE NEED FOR A SEPARATE EARTHING NETWORK;148
25.4;3. THE SEPARATE EARTHING NETWORK;149
25.5;4. A PRACTICAL EARTHING NETWORK FOR I&C;149
25.6;5.0 INDIAN CONDITIONS & THE SEPARATE I&C EARTHING NETWORK;150
25.7;6. A CODE OF PRACTICE FOR I&C EARTHING & CABLES;150
25.8;7. CONCLUSION;152
25.9;8. ACKNOWLEDGEMENT;152
25.10;9. REFERENCES;152
26;CHAPTER 22. CONTINUAL OPTIMISATION OF CONTROL SYSTEMS IN THERMAL POWER PLANTS;154
26.1;1.0 INTRODUCTION;154
26.2;2.0 DELIBERATIONS, DISCUSSIONS & DILEMNA DURING DESIGN STAGE;154
26.3;3.0 STRATEGY ADOPTED FOR INDUCTION OF LARGE CAPACITY UNIT;155
26.4;4.0 ENHANCEMENTS OF OVERALL CYCLE EFFICIENCY;155
26.5;5.0 TRIALS & TRIBULATIONS EXPERIENCED & THEIR SOLUTION;156
26.6;6.0 CONTROL ALGORITHMS & PHILOSOPHIES FOR UNIT-6;157
26.7;7.0 BRIEF OVERVIEW OF HIGHLIGHTS AND FEATURES OF TROMBAY UNIT 6 DDC;158
26.8;8.0 CONCLUSIONS;158
27;CHAPTER 23. PRACTICAL EXPERIENCE WITH PROGRESSIVE AUTOMATION CONCEPTS IN POWER PLANTS;162
27.1;1. Introduction;162
27.2;2. Automation structure in power plants;162
27.3;3. Automation of function units;163
27.4;4. Use of the program library in automation;165
27.5;5. Summary and prospects;168
27.6;Bibliography;169
28;CHAPTER 24. PERFORMANCE OF NUCLEAR UNIT CONTROLS IN GRID EMERGENCY SITUATIONS;170
28.1;Abstract;170
28.2;INTRODUCTION;170
28.3;ONTARIO HYDRO'S GRID SYSTEM;170
28.4;OVERALL UNIT CONTROL;171
28.5;POWER SYSTEMS CONTROL NEEDS;172
28.6;RESPONSE DURING GRID EMERGENCIES;173
28.7;NUCLEAR UNIT BEHAVIOR IN A RECENT GRID DISTURBANCE;176
28.8;ANALYSIS OF NUCLEAR UNIT RESPONSE;177
28.9;CONCLUSIONS;177
28.10;References;177
29;CHAPTER 25. ANALYSIS OF THERMAL-HYDRODYNAMIC INSTABILITY BY USING TRANSFER FUNCTION MATRIX METHOD;178
29.1;Abstract;178
29.2;INTRODUCTION;178
29.3;FUNDAMENTAL EQUATIONS;178
29.4;TRANSFER MATRIX MODEL OF BOILING CHANNAL;179
29.5;SYSTEM MATRIX MODEL;179
29.6;CONCLUDING REMARKS;180
29.7;REFFERENCES;181
30;CHAPTER 26. POWER SYSTEM STABILIZERS —ANALYTICAL TECHNIQUES AND PRACTICAL CRITERIA FOR DESIGN;184
30.1;Abetract;184
30.2;INTRODUCTION;184
30.3;MATHEMATICAL MODEL;184
30.4;SYNCHRONIZING AND DAMPING TORQUES;185
30.5;REVIEW OF METHODS USING OPTIMAL CONTROL THEORY AND POLE PLACEMENT METHODS;187
30.6;COORDINATED SYNTHESIS OF PSS PARAMETERS IN A MULTI-MACHINE SYSTEM;188
30.7;CONCLUSIONS;189
30.8;Acknowledgements;189
30.9;REFERENCES;189
31;CHAPTER 27. DESIGN OF A COMPENSATOR FOR IMPROVEMENT OF THE STABILITY OF HYDRO-TURBINE GOVERNING SYSTEMS;192
31.1;Abstract;192
31.2;INTRODUCTION;192
31.3;SYSTEM STUDIED;192
31.4;STABILITY CURVES;193
31.5;COMPENSATOR;194
31.6;CONCLUSIONS;198
31.7;ACKNOWLEDGEMENT;198
31.8;REFERENCES;198
31.9;NOTATION;199
32;CHAPTER 28. ON MODELLING AND SIMULATION OF GRID CONNECTED INDUCTION GENERATORS DRIVEN BY MINI HYDRO/WIND TURBINES;200
32.1;Abstract;200
32.2;INTRODUCTION;200
32.3;STEADY STATE MODELLING;200
32.4;MODELLING UNDER SELF EXCITED CONDITION;202
32.5;MODELLING UNDER DYNAMIC/TRANSIENT CONDITIONS;203
32.6;COMPUTER SIMULATION;205
32.7;TYPICAL RESULTS;205
32.8;CONCLUSION;206
32.9;ACKNOWLEDGEMENTS;206
32.10;REFERENCES;206
33;CHAPTER 29. MODELLING THE CHARACTERISTICS OF THERMAL POWER PLANT BOILER FURNACES;210
33.1;SUMMARY;210
33.2;NOMENCLATURE;210
33.3;INTRODUCTION;210
33.4;MODEL FORMULATION;211
33.5;COMPUTATIONAL PROCEDURE;213
33.6;MODEL VALIDATION;213
33.7;RESULT AND DISCUSSION;214
33.8;CONCLUSION;215
33.9;REFERENCES;215
34;CHAPTER 30. PERFORMANCE OF AN ADAPTIVE POWER SYSTEM STABILIZER IN A MULTI-MACHINE SYSTEM;218
34.1;ABSTRACT;218
34.2;1. INTRODUCTION;218
34.3;2. PROPOSED SPSS;218
34.4;3. MULTI-MACHINE POWER SYSTEM MODEL;219
34.5;4. RESULTS;219
34.6;5. ANALYSIS AND DISCUSSION;219
34.7;6. CONCLUSIONS;220
34.8;REFERENCES;220
34.9;APPENDIX I;220
34.10;APPENDIX II;221
35;CHAPTER 31. EFFECTIVENESS OF CONTROL SIGNALS FOR POWER SYSTEM STABILIZERS;226
35.1;ABSTRACT;226
35.2;LIST OF SYMBOLS;226
35.3;1. INTRODUCTION;226
35.4;2. DEVELOPMENT OF SYSTEM MODEL;227
35.5;3. NUMERICAL EXAMPLE;228
35.6;4. CONCLUSIONS;229
35.7;REFERENCES;229
35.8;Appendix A;230
35.9;Appendix B;230
35.10;Appendix C;230
36;CHAPTER 32. AUTOMATIC GENERATION OF POWER SYSTEM ONE-LINE DIAGRAMS;234
36.1;1.0 Summary;234
36.2;2.0 Introduction;234
36.3;3.0 Methodology;234
36.4;4.0 Conclusion;237
36.5;REFERENCES;238
36.6;ACKNOWLEDGEMENT;238
37;CHAPTER 33. START-UP AND SHUT-DOWN OF LARGE SIZE TURBO SETS;240
37.1;SUMMARY;240
37.2;AUTOMATIC CONTROL;242
37.3;START-UP PROCEDURE;243
38;CHAPTER 34. MICRO-COMPUTER IMPLEMENTATION OF AN ADAPTIVE POWER SYSTEM STABILIZER;244
38.1;Abstract;244
38.2;INTRODUCTION;244
38.3;SELF-TUNING ALGORITHM;244
38.4;ASPECTS OF MICRO-COMPUTER IMPLEMENTATION;244
38.5;INITIALIZATION DONE;245
38.6;SELECT FUNCTION;245
38.7;REAL TIME EXPERIMENTAL RESULTS;246
38.8;CONCLUSIONS;246
38.9;REFERENCES;246
39;CHAPTER 35. TOOL — A NEW LANGUAGE FOR REAL TIME CONTROL APPLICATIONS;248
39.1;Abstract;248
39.2;1. INTRODUCTION;248
39.3;2. STRUCTURE OF TOOL;249
39.4;3.CONCLUSIONS;252
39.5;REFERENCES;253
40;CHAPTER 36. DISCRETE-TIME AUTOMATIC GENERATION CONTROL OF INTERCONNECTED REHEAT THERMAL SYSTEMS CONSIDERING GENERATION RATE CONSTRAINTS;254
40.1;Abstract;254
40.2;INTRODUCTION;254
40.3;SYSTEM INVESTIGATED;255
40.4;TRANSFER FUNCTION MODEL;255
40.5;DISCRETE-TIME DYNAMIC MODEL;255
40.6;ANALYSIS;256
40.7;AREA CAPACITY EFFECT;257
40.8;CONCLUSIONS;260
40.9;NOMENCLATURE;260
40.10;APPENDIX;261
40.11;REFERENCES;261
41;CHAPTER 37. MICRO-PROCESSOR BASED TESTING OF SHUT-OFF ROD DRIVE MECHANISM FOR DHRUVA REACTOR;262
41.1;ABSTRACT;262
41.2;1. INTRODUCTION;262
41.3;2. OVERALL SYSTEM DESCRIPTION;262
41.4;3. FUNCTIONAL DESCRIPTION OF TEST CONSOLE;263
41.5;4. CONCLUSION;265
42;CHAPTER 38. MICROPROCESSOR BASED DISTRIBUTED AND REDUNDANT PROGRAMMABLE CONTROLLER SYSTEMS USING STANDARD HARDWARE AND SOFTWARE BLOCKS;270
42.1;Previous status;270
42.2;ECIL catered to the needs;270
42.3;Present trend;270
42.4;ECIL's development plan;270
42.5;Our approach and selection;271
42.6;Redundant Application: First phase of our development;271
42.7;Details of hardware configuration of the system;272
42.8;Hardware and software modules and their interaction w.r.t. system requirement;272
42.9;Details of application software modules;274
42.10;Achievements;274
42.11;Enhancements planned;274
42.12;Acknowledgements;274
42.13;References;275
43;AUTHOR INDEX;276
44;KEYWORD INDEX;278



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.