E-Book, Englisch, 276 Seiten, Web PDF
Reihe: IFAC Symposia Series
Ramamoorty Automation and Instrumentation for Power Plants
1. Auflage 2016
ISBN: 978-1-4832-9888-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Selected Papers from the IFAC Symposium, Bangalore, India, 15-17 December 1986
E-Book, Englisch, 276 Seiten, Web PDF
Reihe: IFAC Symposia Series
ISBN: 978-1-4832-9888-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
An analysis of power systems, control hardware, modelling and simulation, instrumentation, and computers and distributed systems. The stability of plants and their interaction in a multi-machine system is also discussed, as well as an analysis of the values of LOFT ATWS EVENT for PWR and the new algorithm of on-line ELD for thermal power plants.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover
;1
2;Automation and Instrumentation for Power Plants;4
3;Copyright Page
;5
4;Table of Contents;8
5;CHAPTER 1. RECENT TRENDS IN POWER PLANT CONTROL;10
6;CHAPTER 2. COMPUTER-AIDED CONTROL SYSTEM DESIGN (CACSD): SOME PERSPECTIVES;14
6.1;1. INTRODUCTION;14
6.2;2. EARLY CACSD PACKAGES;14
6.3;3. LQG DESIGNS;14
6.4;4. INTEGRATED DESIGN PACKAGES;14
7;CHAPTER 3. HYDROELECTRIC POWER STATION CONTROL SYSTEMS;16
7.1;Summary;16
7.2;1. Background;16
7.3;2. Organizational Structure;16
7.4;3. Power Station Ranking;17
7.5;4. Organization of Operation;17
7.6;5. First-Tier Systems with Conventional Technology;17
7.7;6. First-Tier Automatic System Using Digital Technology;18
7.8;7. Speed Governing;19
7.9;8. Voltage Regulation;19
7.10;9. Second-Tier Systems;20
7.11;10. Third-Tier Automatic Systems: Catchment Control Centers;20
7.12;11. Automatic Spillway Operation Systems;22
8;CHAPTER 4. A DISTRIBUTED CONTROL AND MONITORING SYSTEM FOR NUCLEAR POWER PLANTS;24
8.1;GENERAL;24
8.2;DESIGN BASIS;24
9;CHAPTER 5. RECENT TRENDS IN DISTRIBUTED PROCESS CONTROL COMPUTERS;26
9.1;RECENT TRENDS IN DISTRIBUTED PROCESS CONTROL COMPUTERS;26
9.2;INTRODUCTION;26
9.3;TRENDS IN COMPUTER HARDWARE;26
9.4;SOFTWARE TRENDS;26
9.5;SYSTEM TRENDS;27
9.6;TRENDS IN COMPUTER CONTROL SYSTEMS;27
9.7;RELIABILITY AND SAFETY;27
9.8;SUMMARY AND CONCLUSIONS;28
9.9;REFERENCES;28
10;CHAPTER 6. ADVANCED DIAGNOSTIC SYSTEMS FOR THERMOELECTRIC PLANTS OPERATION;32
10.1;1. INTRODUCTION;32
10.2;SYSTEM ARCHITECTURE;32
10.3;DIAGNOSTIC ORIENTED ON LINE FUNCTIONS;34
10.4;4. DEVELOPMENT OF DIAGNOSTICAL FUNCTIONS;36
10.5;CONCLUSIONS;36
10.6;REFERENCES;36
11;CHAPTER 7. ON-LINE POWER SYSTEM TOPOLOGICAL OBSERVABILITY ANALYSIS ALGORITHMS: A COMPARATIVE STUDY;40
11.1;ABSTRACT;40
11.2;1. INTRODUCTION;40
11.3;2. TOPOLOGICAL OBSERVABILITY: A THEORETICAL BACKGROUND;41
11.4;3. NETWORK NODES VS. MEASUREMENT SET: DEFINITIONS;41
11.5;4. MAPLE LEAF ALGORITHM FOR TOPOLOGICAL OBSERVABILITY ANALYSIS;42
11.6;5. AN EXAMPLE AND TEST RESULTS;44
11.7;6. ALGORITHMS FOR POWER SYSTEM OBSERVABILITY ANALYSIS: A COMPARATIVE STUDY;44
11.8;7. CONCLUSION;46
11.9;ACKNOWLEDGMENT;46
11.10;REFERENCES;47
12;CHAPTER 8. DECOUPLED STATE-ESTIMATION IN ENERGY CONTROL CENTRES;48
12.1;ABSTRACT;48
12.2;1. INTRODUCTION;48
12.3;2. POWER SYSTEM MEASUREMENTS;49
12.4;3. STATE ESTIMATOR IN ENERGY CONTROL CENTRES;50
12.5;4. SIMULATION RESULTS;50
12.6;5. DISCUSSION;52
12.7;6. CONCLUSIONS;52
12.8;7. ACKNOWLEDGEMENT;52
12.9;8. REFERENCES;52
12.10;APPENDIX I. SINGULAR VALUE DECOMPOSITION (SVD);53
12.11;APPENDIX II;53
12.12;APPENDIX III: COMPUTER-ALGORITHM STEPS;54
13;CHAPTER 9. THE REALISATION OF DECENTRALISED CONTROL FOR LARGE-SCALE POWER SYSTEMS;56
13.1;Abstract;56
13.2;1. INTRODUCTION;56
13.3;2. COHERENCY BASED AGGREGATION;56
13.4;3. DECENTRALIZED CONTROLLERS AND WEIGHTING MATRICES;57
13.5;4. ILLUSTRATIVE EXAMPLE;59
13.6;5. CONCLUSION;59
13.7;ACKNOWLEDGMENT;59
13.8;REFERENCES;59
14;CHAPTER 10. DETERMINATION OF TRANSIENT STABILITY-CONSTRAINED PLANT GENERATION LIMITS;62
14.1;I. INTRODUCTION;62
14.2;II. THE APPROACH;62
14.3;III. POWER SYSTEM MODEL;62
14.4;IV. THE PROCEDURE;63
14.5;V. RESULTS AND DISCUSSION;64
14.6;VI. CONCLUSION;66
14.7;ACKNOWLEDGEMENT;66
14.8;REFERENCES;66
15;CHAPATER 11. VARIABLE STRUCTURE CONTROLLER FOR DIRECT CYCLE BOILING WATER REACTOR POWER PLANT;68
15.1;SUMMARY;68
15.2;1. INTRODUCTION;68
15.3;2. SYSTEM MODEL;69
15.4;3. VARIABLE STRUCTURE SYSTEMS;71
15.5;4. SIMULATION RESULTS;71
15.6;5. CONCLUSIONS;72
15.7;ACKNOWLEDGEMENT;73
15.8;REFERENCES;73
15.9;NOMENCLATURE;73
16;CHAPTER 12. ANALYSIS OF A LOFT ATWS EVENT FOR PWR USING THE AUTOREGRESSIVE MODEL;82
16.1;Abstract;82
16.2;INTRODUCTION;82
16.3;A BRIEF DESCRIPTION OF LOFT CORE AND L9-3 EXPERIMENT;82
16.4;ANALYTICAL METHOD;83
16.5;EXAMPLES OF MODELING;84
16.6;APPLICATION OF MODEL FOR FORCASTING;87
16.7;CONCLUSION;87
16.8;REFERENCE;87
17;CHAPTER 13. A NEW ALGORITHM OF ON-LINE ELD FOR THERMAL POWER PLANTS;90
17.1;Abstract;90
17.2;Keywords;90
17.3;1 INTRODUCTION;90
17.4;2 DESCRIPTION OF UPPER LEVEL IN PROPOSED ALGORITHM;91
17.5;3. DISCRIPTION OF LOWER LEVEL IN PROPOSED ALGORITHM;95
17.6;4. SIMULATION;96
17.7;5 CONCLUSION;98
17.8;Reference;98
18;CHAPTER 14. INTEGRATED APPROACH TO COGENERATION PLANNING, CONTROL AND MANAGEMENT;100
18.1;ABSTRACT;100
18.2;1. INTRODUCTION;100
18.3;2. COGENERATION - WHAT, WHY AND HOW?;100
18.4;3. PLANNING OF COGENERATION;101
18.5;4. COMPUTER-AIDED PLANNING, CONTROL AND MANAGEMENT (CAPCM);102
18.6;5. INTEGRATED APPROACH;102
18.7;6. CONCLUSIONS;103
18.8;7. REFERENCES;103
19;CHAPTER 15. AN IMPLICIT SELF-TUNING REGULATOR AS A POWER SYSTEM STABILIZER;110
19.1;ABSTRACT;110
19.2;INTRODUCTION;110
19.3;GENERALIZED SELF-TUNING CONTROL;110
19.4;SYSTEM MODEL AND PARAMETER IDENTIFICATION;111
19.5;RESULTS;111
19.6;CONCLUSIONS;112
19.7;REFERENCES;112
19.8;APPENDIX;112
20;CHAPTER 16. AUTOMATIC POWER CONTROL SYSTEM OF DHRUVA NUCLEAR REACTOR;116
20.1;ABSTRACT;116
20.2;1.0 INTRODUCTION;116
20.3;2.0 INSTRUMENTATION SCHEME;116
20.4;3.0 REACTOR POWER CONTROL SCHEME;117
20.5;4.0 CONTROL SYSTEM STABILITY ANALYSIS;118
20.6;5.0 CONCLUSION;118
20.7;6.0 REFERENCES;118
21;CHAPTER 17. MICROCOMPUTER BASED ADAPTIVE STABILISER FOR STATIC VAR COMPENSATORS IN POWER SYSTEMS;122
21.1;ABSTRACT;122
21.2;INTRODUCTION;122
21.3;STATIC VAR COMPENSATOR MODEL;122
21.4;DISCRETE VERSION OF THE STATIC VAR COMPENSATOR MODEL;123
21.5;ADAPTIVE STABILISER ALGORITHM;123
21.6;POWER SYSTEM MODEL;124
21.7;RESULTS;124
21.8;CONCLUSIONS;124
21.9;Acknowledgements;125
21.10;REFERENCES;125
21.11;APPENDICIES;125
21.12;APPENDIX I;125
21.13;Appendix II;126
22;CHAPTER 18. MEASUREMENT BASED CONTROL OF POWER SYSTEMS;130
22.1;INTRODUCTION;130
22.2;SYNCHRONOUS PHASOR MEASUREMENT;130
22.3;STATIC STATE ESTIMATION OF POWER SYSTEMS;131
22.4;ESTIMATION OF GENERATOR INTERNAL STATES;131
22.5;CONTROL OF PLANTS AND SYSTEMS;132
22.6;COMMUNICATION NEEDS;133
22.7;CONCLUSIONS;133
22.8;REFERENCES;133
23;CHAPTER 19. COMPUTER BASED INSTRUMENTATION FOR NUCLEAR POWER STATION;134
23.1;1. Introduction;134
23.2;2. Data Logging Sub-systems;134
23.3;3. Disturbance Analyser;135
23.4;4. Channel Temp.Monitoring Sub-systems;136
23.5;5. Recording Annunciation sub-System;137
23.6;6. Window Annunciator Logging sub-system;139
23.7;7. Real time Master-Slave clock sub-system;139
23.8;8. Integrated System at a glance;140
24;CHAPTER 20. MICROPROCESSOR BASED WINDING FAULT DETECTION SYSTEM USING THE INDUCTANCE SIGNATURE TECHNIQUE;142
24.1;SUMMARY;142
24.2;1. INTRODUCTION;142
24.3;2. PRINCIPLE OF INDUCTANCE SIGNATURE TECHNIQUE;143
24.4;3. DESCRIPTION OF THE SYSTEM;143
24.5;4. LABORATORY EXPERIMENTS WITH MANUALLY OPERATED UNIT;144
24.6;5. FIELD TESTS;145
24.7;6. INFERENCE;146
24.8;7. FUTURE PROGRAMME;146
24.9;8. COLLUSIONS;146
24.10;9. ACKNOWLEDGEMENTS;146
24.11;10. REFERENCES;147
25;CHAPTER 21. A SEPARATE EARTHING NETWORK FOR I & C CABLES AND EQUIPMENT IN THE CONTEXT OF SIGNAL INTEGRITY AND EMI IN A POWER STATION;148
25.1;Abstract;148
25.2;INTRODUCTION;148
25.3;2 THE NEED FOR A SEPARATE EARTHING NETWORK;148
25.4;3. THE SEPARATE EARTHING NETWORK;149
25.5;4. A PRACTICAL EARTHING NETWORK FOR I&C;149
25.6;5.0 INDIAN CONDITIONS & THE SEPARATE I&C EARTHING NETWORK;150
25.7;6. A CODE OF PRACTICE FOR I&C EARTHING & CABLES;150
25.8;7. CONCLUSION;152
25.9;8. ACKNOWLEDGEMENT;152
25.10;9. REFERENCES;152
26;CHAPTER 22. CONTINUAL OPTIMISATION OF CONTROL SYSTEMS IN THERMAL POWER PLANTS;154
26.1;1.0 INTRODUCTION;154
26.2;2.0 DELIBERATIONS, DISCUSSIONS & DILEMNA DURING DESIGN STAGE;154
26.3;3.0 STRATEGY ADOPTED FOR INDUCTION OF LARGE CAPACITY UNIT;155
26.4;4.0 ENHANCEMENTS OF OVERALL CYCLE EFFICIENCY;155
26.5;5.0 TRIALS & TRIBULATIONS EXPERIENCED & THEIR SOLUTION;156
26.6;6.0 CONTROL ALGORITHMS & PHILOSOPHIES FOR UNIT-6;157
26.7;7.0 BRIEF OVERVIEW OF HIGHLIGHTS AND FEATURES OF TROMBAY UNIT 6 DDC;158
26.8;8.0 CONCLUSIONS;158
27;CHAPTER 23. PRACTICAL EXPERIENCE WITH PROGRESSIVE AUTOMATION CONCEPTS IN POWER PLANTS;162
27.1;1. Introduction;162
27.2;2. Automation structure in power plants;162
27.3;3. Automation of function units;163
27.4;4. Use of the program library in automation;165
27.5;5. Summary and prospects;168
27.6;Bibliography;169
28;CHAPTER 24. PERFORMANCE OF NUCLEAR UNIT CONTROLS IN GRID EMERGENCY SITUATIONS;170
28.1;Abstract;170
28.2;INTRODUCTION;170
28.3;ONTARIO HYDRO'S GRID SYSTEM;170
28.4;OVERALL UNIT CONTROL;171
28.5;POWER SYSTEMS CONTROL NEEDS;172
28.6;RESPONSE DURING GRID EMERGENCIES;173
28.7;NUCLEAR UNIT BEHAVIOR IN A RECENT GRID DISTURBANCE;176
28.8;ANALYSIS OF NUCLEAR UNIT RESPONSE;177
28.9;CONCLUSIONS;177
28.10;References;177
29;CHAPTER 25. ANALYSIS OF THERMAL-HYDRODYNAMIC INSTABILITY BY USING TRANSFER FUNCTION MATRIX METHOD;178
29.1;Abstract;178
29.2;INTRODUCTION;178
29.3;FUNDAMENTAL EQUATIONS;178
29.4;TRANSFER MATRIX MODEL OF BOILING CHANNAL;179
29.5;SYSTEM MATRIX MODEL;179
29.6;CONCLUDING REMARKS;180
29.7;REFFERENCES;181
30;CHAPTER 26. POWER SYSTEM STABILIZERS —ANALYTICAL TECHNIQUES AND PRACTICAL CRITERIA FOR DESIGN;184
30.1;Abetract;184
30.2;INTRODUCTION;184
30.3;MATHEMATICAL MODEL;184
30.4;SYNCHRONIZING AND DAMPING TORQUES;185
30.5;REVIEW OF METHODS USING OPTIMAL CONTROL THEORY AND POLE PLACEMENT METHODS;187
30.6;COORDINATED SYNTHESIS OF PSS PARAMETERS IN A MULTI-MACHINE SYSTEM;188
30.7;CONCLUSIONS;189
30.8;Acknowledgements;189
30.9;REFERENCES;189
31;CHAPTER 27. DESIGN OF A COMPENSATOR FOR IMPROVEMENT OF THE STABILITY OF HYDRO-TURBINE GOVERNING SYSTEMS;192
31.1;Abstract;192
31.2;INTRODUCTION;192
31.3;SYSTEM STUDIED;192
31.4;STABILITY CURVES;193
31.5;COMPENSATOR;194
31.6;CONCLUSIONS;198
31.7;ACKNOWLEDGEMENT;198
31.8;REFERENCES;198
31.9;NOTATION;199
32;CHAPTER 28. ON MODELLING AND SIMULATION OF GRID CONNECTED INDUCTION GENERATORS DRIVEN BY MINI HYDRO/WIND TURBINES;200
32.1;Abstract;200
32.2;INTRODUCTION;200
32.3;STEADY STATE MODELLING;200
32.4;MODELLING UNDER SELF EXCITED CONDITION;202
32.5;MODELLING UNDER DYNAMIC/TRANSIENT CONDITIONS;203
32.6;COMPUTER SIMULATION;205
32.7;TYPICAL RESULTS;205
32.8;CONCLUSION;206
32.9;ACKNOWLEDGEMENTS;206
32.10;REFERENCES;206
33;CHAPTER 29. MODELLING THE CHARACTERISTICS OF THERMAL POWER PLANT BOILER FURNACES;210
33.1;SUMMARY;210
33.2;NOMENCLATURE;210
33.3;INTRODUCTION;210
33.4;MODEL FORMULATION;211
33.5;COMPUTATIONAL PROCEDURE;213
33.6;MODEL VALIDATION;213
33.7;RESULT AND DISCUSSION;214
33.8;CONCLUSION;215
33.9;REFERENCES;215
34;CHAPTER 30. PERFORMANCE OF AN ADAPTIVE POWER SYSTEM STABILIZER IN A MULTI-MACHINE SYSTEM;218
34.1;ABSTRACT;218
34.2;1. INTRODUCTION;218
34.3;2. PROPOSED SPSS;218
34.4;3. MULTI-MACHINE POWER SYSTEM MODEL;219
34.5;4. RESULTS;219
34.6;5. ANALYSIS AND DISCUSSION;219
34.7;6. CONCLUSIONS;220
34.8;REFERENCES;220
34.9;APPENDIX I;220
34.10;APPENDIX II;221
35;CHAPTER 31. EFFECTIVENESS OF CONTROL SIGNALS FOR POWER SYSTEM STABILIZERS;226
35.1;ABSTRACT;226
35.2;LIST OF SYMBOLS;226
35.3;1. INTRODUCTION;226
35.4;2. DEVELOPMENT OF SYSTEM MODEL;227
35.5;3. NUMERICAL EXAMPLE;228
35.6;4. CONCLUSIONS;229
35.7;REFERENCES;229
35.8;Appendix A;230
35.9;Appendix B;230
35.10;Appendix C;230
36;CHAPTER 32. AUTOMATIC GENERATION OF POWER SYSTEM ONE-LINE DIAGRAMS;234
36.1;1.0 Summary;234
36.2;2.0 Introduction;234
36.3;3.0 Methodology;234
36.4;4.0 Conclusion;237
36.5;REFERENCES;238
36.6;ACKNOWLEDGEMENT;238
37;CHAPTER 33. START-UP AND SHUT-DOWN OF LARGE SIZE TURBO SETS;240
37.1;SUMMARY;240
37.2;AUTOMATIC CONTROL;242
37.3;START-UP PROCEDURE;243
38;CHAPTER 34. MICRO-COMPUTER IMPLEMENTATION OF AN ADAPTIVE POWER SYSTEM STABILIZER;244
38.1;Abstract;244
38.2;INTRODUCTION;244
38.3;SELF-TUNING ALGORITHM;244
38.4;ASPECTS OF MICRO-COMPUTER IMPLEMENTATION;244
38.5;INITIALIZATION DONE;245
38.6;SELECT FUNCTION;245
38.7;REAL TIME EXPERIMENTAL RESULTS;246
38.8;CONCLUSIONS;246
38.9;REFERENCES;246
39;CHAPTER 35. TOOL — A NEW LANGUAGE FOR REAL TIME CONTROL APPLICATIONS;248
39.1;Abstract;248
39.2;1. INTRODUCTION;248
39.3;2. STRUCTURE OF TOOL;249
39.4;3.CONCLUSIONS;252
39.5;REFERENCES;253
40;CHAPTER 36. DISCRETE-TIME AUTOMATIC GENERATION CONTROL OF INTERCONNECTED REHEAT THERMAL SYSTEMS CONSIDERING GENERATION RATE CONSTRAINTS;254
40.1;Abstract;254
40.2;INTRODUCTION;254
40.3;SYSTEM INVESTIGATED;255
40.4;TRANSFER FUNCTION MODEL;255
40.5;DISCRETE-TIME DYNAMIC MODEL;255
40.6;ANALYSIS;256
40.7;AREA CAPACITY EFFECT;257
40.8;CONCLUSIONS;260
40.9;NOMENCLATURE;260
40.10;APPENDIX;261
40.11;REFERENCES;261
41;CHAPTER 37. MICRO-PROCESSOR BASED TESTING OF SHUT-OFF ROD DRIVE MECHANISM FOR DHRUVA REACTOR;262
41.1;ABSTRACT;262
41.2;1. INTRODUCTION;262
41.3;2. OVERALL SYSTEM DESCRIPTION;262
41.4;3. FUNCTIONAL DESCRIPTION OF TEST CONSOLE;263
41.5;4. CONCLUSION;265
42;CHAPTER 38. MICROPROCESSOR BASED DISTRIBUTED AND REDUNDANT PROGRAMMABLE CONTROLLER SYSTEMS USING STANDARD HARDWARE AND SOFTWARE BLOCKS;270
42.1;Previous status;270
42.2;ECIL catered to the needs;270
42.3;Present trend;270
42.4;ECIL's development plan;270
42.5;Our approach and selection;271
42.6;Redundant Application: First phase of our development;271
42.7;Details of hardware configuration of the system;272
42.8;Hardware and software modules and their interaction w.r.t. system requirement;272
42.9;Details of application software modules;274
42.10;Achievements;274
42.11;Enhancements planned;274
42.12;Acknowledgements;274
42.13;References;275
43;AUTHOR INDEX;276
44;KEYWORD INDEX;278