Buch, Englisch, Band 103, 334 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 522 g
Reihe: Progress in Mathematics
An abstract approach to integration and Riesz representation through function cones
Buch, Englisch, Band 103, 334 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 522 g
Reihe: Progress in Mathematics
ISBN: 978-1-4612-6733-1
Verlag: Birkhäuser Boston
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
I. General Integration Theory.- II. Functional Analytic Aspects and Radon Integrals.- III. Set—Theoretical Aspects and Radon Measures.- § 16 Notes and special applications.- 16.1 Historical notes and comments.- 16.2 L.H. Loomis’ abstract Riemann integration theory.- 16.3 Representation theorem of H. Bauer.- 16.4 Measurability and integrability in the sense of N. Dunford and J.T. Schwartz, as developed by K.P.S. and M. Bhaskara Rao.- 16.5 H. Königs’ version of a basic measure extension theorem.- 16.6 Representation theorem of D. Pollard and F. Topsoe for cones of positive functions.- 16.7 Representation theorem of C. Berg, J.P.R. Christensen and P. Ressel for cones of positive functions.- 16.8 F. Topsoe’s representation theorem for cones of positive functions without stability w.r.t. positive differences.- 16.9 An abstract version of Henry’s extension theorem.- § 17 Hahn—Banach—Andenaes theorem for conoids.- Index of symbols.- References.