Polyanin / Manzhirov | Handbook of Integral Equations | E-Book | sack.de
E-Book

E-Book, Englisch, 1144 Seiten

Polyanin / Manzhirov Handbook of Integral Equations

Second Edition

E-Book, Englisch, 1144 Seiten

ISBN: 978-0-203-88105-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, Wiener–Hopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. With 300 additional pages, this edition covers much more material than its predecessor. New to the Second Edition • New material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions • More than 400 new equations with exact solutions • New chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs • Additional examples for illustrative purposes To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity. The book can be used as a database of test problems for numerical and approximate methods for solving linear and nonlinear integral equations.
Polyanin / Manzhirov Handbook of Integral Equations jetzt bestellen!

Zielgruppe


Applied mathematicians; mechanical, electrical, civil, and optical engineers; physicists; and chemists.

Weitere Infos & Material


EXACT SOLUTIONS OF INTEGRAL EQUATIONS
Linear Equations of the First Kind with Variable Limit of Integration
Linear Equations of the Second Kind with Variable Limit of Integration
Linear Equations of the First Kind with Constant Limits of Integration
Linear Equations of the Second Kind with Constant Limits of Integration
Nonlinear Equations of the First Kind with Variable Limit of Integration
Nonlinear Equations of the Second Kind with Variable Limit of Integration
Nonlinear Equations of the First Kind with Constant Limits of Integration
Nonlinear Equations of the Second Kind with Constant Limits of Integration
METHODS FOR SOLVING INTEGRAL EQUATIONS
Main Definitions and Formulas: Integral Transforms
Methods for Solving Linear Equations of the Form ?xa K(x, t)y(t)dt = f(x)
Methods for Solving Linear Equations of the Form y(x) – ?xa K(x, t)y(t)dt = f(x)
Methods for Solving Linear Equations of the Form ?xa K(x, t)y(t)dt = f(x)
Methods for Solving Linear Equations of the Form y(x) – ?xa K(x, t)y(t)dt = f(x)
Methods for Solving Singular Integral Equations of the First Kind
Methods for Solving Complete Singular Integral Equations
Methods for Solving Nonlinear Integral Equations
Methods for Solving Multidimensional Mixed Integral Equations
Application of Integral Equations for the Investigation of Differential Equations


SUPPLEMENTS
Elementary Functions and Their Properties
Finite Sums and Infinite Series
Tables of Indefinite Integrals
Tables of Definite Integrals
Tables of Laplace Transforms
Tables of Inverse Laplace Transforms
Tables of Fourier Cosine Transforms
Tables of Fourier Sine Transforms
Tables of Mellin Transforms
Tables of Inverse Mellin Transforms
Special Functions and Their Properties
Some Notions of Functional Analysis


References
Index


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.