Perez | Advances in Organometallic Chemistry | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 62, 322 Seiten

Reihe: Advances in Organometallic Chemistry

Perez Advances in Organometallic Chemistry


1. Auflage 2014
ISBN: 978-0-12-801084-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, Band Volume 62, 322 Seiten

Reihe: Advances in Organometallic Chemistry

ISBN: 978-0-12-801084-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This book contains authoritative reviews regarding the field of Organometallic Chemistry, written by highly qualified experts within the area, and reviewed by other experts before publication. Because of this high standard, AOC is one of the most cited journals in both Organic and Inorganic Chemistry fields. - High quality of the articles - Expertise of authors - Careful editing that provides an easy-to-read material

Perez Advances in Organometallic Chemistry jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Advances in Organometallic Chemistry;4
3;Copyright;5
4;Contents;6
5;Contributors;8
6;Chapter One: Palladium-Mediated Organofluorine Chemistry;10
6.1;1. Introduction;10
6.2;2. CC Coupling Reactions of Fluorinated Reagents;12
6.2.1;2.1. Overview of catalytic CC coupling reactions of fluorinated derivatives;12
6.2.1.1;2.1.1. CC coupling of fluorinated alkyl derivatives;13
6.2.1.1.1;2.1.1.1. Radical reactions;14
6.2.1.1.2;2.1.1.2. Perfluoroalkyl groups in the Stille reaction;16
6.2.1.1.3;2.1.1.3. Introduction of fluorinated groups using the Negishi reaction;17
6.2.1.1.4;2.1.1.4. Introduction of fluorinated groups using the Suzuki reaction;18
6.2.1.1.5;2.1.1.5. Use of fluoroalkyl silanes as fluoroalkylating reagents;21
6.2.1.1.6;2.1.1.6. Other fluoroalkylating reagents: Fluoroalkyl copper;22
6.2.1.1.7;2.1.1.7. Allylic alkylation reactions;25
6.2.1.1.8;2.1.1.8. Catalysis through palladium mediated CH activation;27
6.2.1.1.9;2.1.1.9. Perfluoroalkylation of unsaturated molecules;29
6.2.1.2;2.1.2. CC coupling of fluorinated aryl derivatives;31
6.2.1.2.1;2.1.2.1. Heck reactions;31
6.2.1.2.2;2.1.2.2. Suzuki-Miyaura reactions;31
6.2.1.2.3;2.1.2.3. Stille reactions;33
6.2.1.2.4;2.1.2.4. Sonogashira reactions;33
6.2.1.3;2.1.3. CC coupling of fluorinated arenes;34
6.2.1.4;2.1.4. CC coupling of fluorinated alkenyls;37
6.2.2;2.2. The PdRF bond;40
6.2.2.1;2.2.1. PdAlkylF bonds;40
6.2.2.2;2.2.2. PdArF bonds;41
6.2.3;2.3. Elementary steps in organofluorine CC coupling palladium-catalyzed processes;44
6.2.3.1;2.3.1. Oxidative addition and related processes;45
6.2.3.1.1;2.3.1.1. Oxidative addition to Pd(0) compounds;45
6.2.3.1.2;2.3.1.2. Oxidation of Pd(II) compounds leading to organofluorine Pd(IV) derivatives;47
6.2.3.2;2.3.2. Transmetalation;49
6.2.3.2.1;2.3.2.1. The transmetalation step in the Stille reaction;50
6.2.3.2.2;2.3.2.2. Transmetalation equilibria between organogold and organopalladium complexes;54
6.2.3.2.3;2.3.2.3. The transmetalation step in the Negishi reaction;56
6.2.3.3;2.3.3. Reductive elimination;58
6.2.3.3.1;2.3.3.1. Reductive elimination from Pd(II) complexes;58
6.2.3.3.2;2.3.3.2. Reductive elimination from Pd(IV) complexes;62
6.2.3.4;2.3.4. 2,1-Insertion;63
6.2.3.5;2.3.5. 1,1-Insertion (migratory insertion);68
6.3;3. CF Activation and Fluorination;70
6.3.1;3.1. Overview of catalytic CC and CX coupling reactions where a CF bond is cleaved;71
6.3.1.1;3.1.1. CC coupling reactions of fluorinated aryls;71
6.3.1.2;3.1.2. CC Coupling reactions of fluorinated alkenes;75
6.3.1.3;3.1.3. Allylic substitutions of a fluorine atom;75
6.3.1.4;3.1.4. Hydrodefluorination reactions;75
6.3.2;3.2. Overview of catalytic CF forming reactions;78
6.3.2.1;3.2.1. Pd-catalyzed fluorination with electrophilic fluorine sources;79
6.3.2.2;3.2.2. Pd-catalyzed fluorination with nucleophilic fluorine sources;83
6.3.3;3.3. The PdF bond;86
6.3.4;3.4. Oxidative addition of RF;90
6.3.5;3.5. ß-F and a-F elimination;94
6.3.6;3.6. Other activation routes for CF cleavage;95
6.3.7;3.7. Reductive elimination of RF;96
6.4;4. Conclusion;101
6.5;Acknowledgment;101
6.6;References;101
7;Chapter Two: Normal and Abnormal N-Heterocyclic Carbene Ligands: Similarities and Differences of Mesoionic C-Donor Complexes;120
7.1;1. Introduction and General Considerations;120
7.2;2. Ligand Nomenclature: Abnormal or Mesoionic Carbene Complexes?;124
7.3;3. Electronic Considerations;126
7.4;4. Reactivity of Complexes with Sterically Comparable Ligands;130
7.4.1;4.1. Imidazolylidene complexes;131
7.4.1.1;4.1.1. Structure and electronics of normal versus abnormal mesoionic imidazolylidene complexes;131
7.4.1.2;4.1.2. Comparative evaluation of imidazolylidene complexes in hydrogenation catalysis and related transformations;138
7.4.1.3;4.1.3. Comparative evaluation of imidazolylidene complexes in cross-coupling catalysis;144
7.4.2;4.2. N,X-Heterocyclic carbene complexes;146
7.4.3;4.3. Triazolylidene complexes;148
7.4.4;4.4. Pyridylidene complexes;150
7.4.4.1;4.4.1. Monodentate pyridylidene complexes;150
7.4.4.2;4.4.2. Polydentate pyridylidene complexes;155
7.4.4.3;4.4.3. Catalytic applications of pyridylidene complexes;156
7.5;5. Conclusions and Outlook;156
7.6;Acknowledgments;158
7.7;References;158
8;Chapter Three: Synthesis and Applications in Catalysis of Metal Complexes with Chelating Phosphinosulfonate Ligands;168
8.1;1. Introduction;169
8.2;2. Synthetic Routes to Achiral and Racemic Phosphine Sulfonic Acid Prochelates;170
8.2.1;2.1. Preparation of phosphinoalkylsulfonates;170
8.2.2;2.2. Preparation of symmetrical phosphinoarylsulfonic acids;172
8.2.3;2.3. Preparation of racemic P-stereogenic phosphinoarylsulfonic acids;175
8.2.4;2.4. Preparation of miscellaneous sulfonate prochelates;178
8.2.4.1;2.4.1. Polysulfonated o-phosphinoarylsulfonates;178
8.2.4.2;2.4.2. Phosphinoarylsulfonates;180
8.2.4.3;2.4.3. Racemic ferrocenylphosphinosulfonate;180
8.2.4.4;2.4.4. Diazaphospholidinobenzenesulfonates;180
8.2.4.5;2.4.5. Imidazolium sulfonate zwitterions;182
8.3;3. Preparation of Scalemic Sulfonate Prochelates;184
8.3.1;3.1. Phosphinoferrocenesulfonates;184
8.3.2;3.2. P-chiral phosphinobenzenesulfonates;185
8.3.3;3.3. Enantiopure phosphinoethanesulfonates;185
8.3.4;3.4. Atropoisomeric phosphinobenzenesulfonates;186
8.3.5;3.5. Enantiopure imidazoliniumbenzenesulfonates;187
8.4;4. Applications of Sulfonate Prochelates in Coordination Chemistry;187
8.4.1;4.1. Transition metal complexes bearing phosphinosulfonate ligand;187
8.4.1.1;4.1.1. Palladium complexes;189
8.4.1.1.1;4.1.1.1. Neutral [(PO)2Pd] complexes;189
8.4.1.1.2;4.1.1.2. Anionic [Pd(PO)R]- complexes;189
8.4.1.1.3;4.1.1.3. Neutral allylic [Pd(PO)] complexes;190
8.4.1.1.4;4.1.1.4. Formation of palladium(alkyl)(PO) complexes;190
8.4.1.2;4.1.2. Nickel complexes;194
8.4.1.3;4.1.3. Platinum complexes;196
8.4.1.4;4.1.4. Rhodium and iridium complexes;197
8.4.1.5;4.1.5. Ruthenium complexes;198
8.4.2;4.2. Transition metal complexes bearing NHC-sulfonate ligand;199
8.5;5. Applications in Molecular Catalysis;201
8.5.1;5.1. Ruthenium-catalyzed activation of allylic alcohols;201
8.5.2;5.2. Hydrogenation/hydrogen (auto)transfers;203
8.5.2.1;5.2.1. Iridium-catalyzed hydrogenation of alkenes;203
8.5.2.2;5.2.2. Ruthenium-catalyzed hydrogenation of ketones;204
8.5.2.3;5.2.3. C(3)-alkylation of saturated amines through hydrogen autotransfer;205
8.5.3;5.3. Rhodium-catalyzed hydroformylation;208
8.5.4;5.4. Copper-catalyzed conjugate addition;208
8.5.5;5.5. Copper-catalyzed asymmetric allylic alkylation;209
8.5.6;5.6. Miscellaneous reactions catalyzed by phoshinesulfonate metal complexes;211
8.6;6. Application of Metal-Phosphinosulfonate Chelate Complexes in Polymerization;213
8.6.1;6.1. Oligo- and polymerization of ethylene;213
8.6.2;6.2. Copolymerization of ethylene with polar monomers;215
8.6.3;6.3. Copolymerization of ethylene with carbon monoxide;216
8.6.4;6.4. Copolymerization of polar monomers with carbon monoxide;217
8.7;7. Recent Contributions;218
8.8;8. Conclusions and Outlook;218
8.9;Acknowledgments;219
8.10;References;219
9;Chapter Four: The Mannich Route to Amino-Functionalized [3]Ferrocenophanes;228
9.1;1. Introduction;228
9.2;2. Prolog: Synthesis of Ansa-Zirconocenes by the Mannich Reaction;230
9.3;3. [3]Ferrocenophane Synthesis by the Mannich Route;232
9.4;4. [3]Ferrocenophane Derived N/P and P/P Chelate Ligands;244
9.5;5. [3]Ferrocenophanes in Bio-Organometallic Chemistry;250
9.6;6. Frustrated Lewis Pair Chemistry at the [3]Ferrocenophane Framework;253
9.7;7. Some Conclusions;257
9.8;Acknowledgments;257
9.9;References;258
10;Chapter Five: Organometallic Intermediates of Gold Catalysis;270
10.1;1. Introduction;270
10.2;2. Organogold Intermediates;271
10.2.1;2.1. p-Complexes;271
10.2.1.1;2.1.1. Alkene gold complexes;271
10.2.1.2;2.1.2. Arene gold complexes;273
10.2.1.3;2.1.3. Allene gold complexes;275
10.2.1.4;2.1.4. Alkyne gold complexes;275
10.2.2;2.2. Vinylic organogold complexes;279
10.2.3;2.3. Alkylgold complexes;286
10.2.4;2.4. Gold hydrides;288
10.2.5;2.5. Gem-diaurated complexes and gold acetylides;289
10.2.6;2.6. Gold carbenoids;294
10.2.7;2.7. Gold(III) intermediates;297
10.3;3. Conclusions;298
10.4;References;299
11;Index;308


References
1 Kirsch P. Modern Fluoroorganic Chemistry. 2nd ed. Weinheim, Germany: Wiley-VCH; 2013. 2 Purser S, Moore PR, Swallow S, Gouverneur V. Fluorine in medicinal chemistry. Chem Soc Rev. 2008;37:320–330. 3 Liang T, Neumann CN, Ritter T. Introduction of fluorine and fluorine-containing functional groups. Angew Chem Int Ed Engl. 2013;52:8214–8264. 4 (a) Ma JA, Cahard D. Asymmetric fluorination, trifluoromethylation, and perfluoroalkylation reactions. Chem Rev. 2008;108:PR1–PR43. (b) Ma JA, Cahard D. Asymmetric fluorination, trifluoromethylation, and perfluoroalkylation reactions. Chem Rev. 2004;104:6119–6146. (c) Nie J, Guo HC, Cahard D, Ma JA. Asymmetric construction of stereogenic carbon centers featuring a trifluoromethyl group from prochiral trifluoromethylated substrates. Chem Rev. 2011;111:455–529. 5 Ojima I. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology. J Org Chem. 2013;78:6358–6383. 6 Torrens H. Carbon fluorine bond activation by platinum group metal complexes. Coord Chem Rev. 2005;249:1957–1985. 7 Amii H, Uneyama K. C-F bond activation in organic synthesis. Chem Rev. 2009;109:2119–2183. 8 McClinton MA, McClinton DA. Trifluoromethylations and related reactions in organic chemistry. Tetrahedron. 1992;48:6555–6666. 9 Umemoto T. Electrophilic perfluoroalkylating agents. Chem Rev. 1996;96:1757–1777. 10 Jin Z, Hammond GB, Xu B. Transition-metal-mediated fluorination, difluoromethylation, and trifluoromethylation. Aldrichim Acta. 2012;45:67–83. 11 Zhang C-P, Chen Q-Y, Guo Y, Xiao Y-C, Gu Y-C. Difluoromethylation and trifluoromethylation reagents derived from tetrafluoroethane-sultone: synthesis, reactivity and applications. Coord Chem Rev. 2014;261:28–72. 12 Murphy PM, Baldwin CS, Buck RC. Syntheses utilizing n-perfluoroalkyl iodides [RFI, CnF2n+1-I] 2000–2010. J Fluorine Chem. 2012;138:3–23. 13 Roy S, Gregg BT, Gribble GW, Le V-D, Roy S. Trifluoromethylation of aryl and heteroaryl halides. Tetrahedron. 2011;67:2161–2195. 14 Liu H, Gu Z, Jiang X. Direct trifluoromethylation of the C–H bond. Adv Synth Catal. 2013;355:617–626. 15 Sato K, Tarui A, Omote M, Ando A, Kumadaki I. Trifluoromethylation of organic compounds and related reactions. Synthesis. 2010;11:1865–1882. 16 Prakash GKS, Hu J. Selective fluoroalkylations with fluorinated sulfones, sulfoxides, and sulfides. Acc Chem Res. 2007;40:921–930. 17 Xu J, Liu X, Fu Y. Recent advance in transition-metal-mediated trifluoromethylation for the construction of C(sp3)-CF3 bonds. Tetrahedron Lett. 2014;55:585–594. 18 Ye Y, Sanford MS. Investigations into transition-metal-catalyzed arene trifluoromethylation reactions. Synlett. 2012;23:2005–2013. 19 Lundgren RJ, Stradiotto M. Transition-metal-catalyzed trifluoromethylation of aryl halides. Angew Chem Int Ed Engl. 2010;49:9322–9324. 20 Liu T, Shen Q. Progress in copper-mediated formation of trifluoromethylated arenes. Eur J Org Chem. 2012;6679–6687. 21 (a) García-Monforte MA, Alonso PJ, Forniés J, Menjón B. Dalton Trans. 2007;2010:3347–3359. (b) Usón R, Forniés J, Tomás M. Anionic perhaloaryl-palladium and -platinum complexes as sources of unusual homo- and hetero-nuclear compounds. J Organomet Chem. 1988;358:525–543. (c) Usón R, Forniés J. Organopalladium and platinum compounds with perhalophenyl ligands. Adv Organomet Chem. 1988;28:219–297. 22 García-Monforte MA, Martínez-Salvador S, Menjón B. The trifluoromethyl group in transition metal chemistry. Eur J Inorg Chem. 2012;4945–4966. 23 (a) Albéniz AC, Espinet P, López-Cimas O, Martín-Ruiz B. Dimeric palladium complexes with bridging aryl groups: when are they stable?. Chem Eur J. 2005;11:242–252. (b) Usón R, Forniés J, Tomás M, Casas JM, Navarro R. Synthesis and reactivity of binuclear homo-metallic or hetero-metallic complexes [NBu4]2[MM'(µ-C6F5)2(C6F5)4] (M = M' = Pd or Pt, M = Pt, M' = Pd) with bridging pentafluorophenyl groups. J Chem Soc Dalton Trans. 1989;2010:169–172. 24 Usón R, Forniés J, Falvello LR, et al. Synthesis and structure of two dinuclear anionic complexes, with Pt(III)-Pt(III) bonds and unprecedented (C6F4O)2 - or {C6F4(OR)2}2 - (R = Me, Et) quinone-like bridging ligands. J Am Chem Soc. 1994;116:7160–7165. 25 See for instance: For turnstile processes (a) J.A.CasaresP.EspinetDynamic behavior of [Pd(C6F5)2(SPPynPh3–n)] complexes: evidence for a turnstile mechanism in intramolecular exchange.Inorg Chem. 1997;3654285431 For isomerization reactions (b) A.L.CasadoJ.A.CasaresP.EspinetMechanism of the uncatalyzed dissociative cis–trans isomerization of bis(pentafluorophenyl)bis(tetrahydrothiophene): a refinement.Inorg Chem. 1998;3741544156 (c) A.C.Albe´nizA.L.CasadoP.EspinetAtropisomerization in cis-[Pd(2-C6BrF4)2L2] (L¼thioether): a dual mechanism involving ligand-dissociative and nondissociative competitive pathways.Inorg Chem. 1999;3825102515 For dissociative processes (d) J.A.CasaresS.CocoP.EspinetY.-S.LinObservation of a slow dissociative process in palladium(II) complexes.Organometallics. 1995;1430583067 (e) J.A.CasaresP.EspinetJ.M.Marti´nez-IlarduyaY.-S.LinKinetic study of the dynamic behavior of [M(C6F5)X(OPPynPh3–n)] (M ¼ Pd, Pt; X ¼ C6F5, halide; n ¼ 1,2,3): activation parameters for the restricted rotation about Palladium-Mediated Organofluorine Chemistry 93 the M-aryl bond, and for the Py associative exchange.Organometallics. 1997;16770779 (f) A.C.Albe´nizA.L.CasadoP.EspinetAtropisomerization in cis- [Pd(2-C6BrF4)2L2] (L ¼ Thioether): a dual mechanism involving ligand-dissociative and nondissociative competitive pathways.Inorg Chem. 1999;3825102515 For other fluxional processes (g) J.A.CasaresP.EspinetK.SoulanticaI.PascualA.G.OrpenP(CH2CH2Py)nPh3–n (Py¼2-pyridyl; n ¼ 1,2,3) as chelating and as binucleating ligands towards palladium.Inorg Chem. 1997;3652515256 (h) M.A.AlonsoJ.A.CasaresP.EspinetJ.M.Marti´nez-IlarduyaC.Pe´rez-BrisoThe 3,5 dichlorotrifluorophenyl ligand, a useful tool for the study of coordination modes and dynamic behavior of complexes of palladium and platinum.Eur J Inorg Chem. 199817451753 (i) M.C.Carrio´nA.GuerreroF.A.Jalo´n, et alFive different fluxional processes in polyfluorophenyl palladium(II) complexes with 2,4,6-tris(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine. The driving effect of the solvent.Inorg Chem. 2003;423885895 26 Casares JA, Espinet P, Salas G. Palladium catalysts for fast norbornene polymerization. A study by NMR and calorimetric methods. Organometallics. 2008;27(15):3761–3769. 27 Espinet P, Albéniz AC, Casares JA, Martínez-Ilarduya JM. 19F NMR in organometallic chemistry: applications of fluorinated aryls. Coord Chem Rev. 2008;252:2180–2206. 28 Högermeier J, Reissig HU. Nine times fluoride can be good for your syntheses. Not just cheaper: nonafluorobutanesulfonates as intermediates for transition metal-catalyzed reactions. Adv Synth Catal. 2009;351:2747–2763. 29 Lechel T, Dash J, Hommes P, Lentz D, Reissig HU. Three-component synthesis of perfluoroalkyl- or perfluoroaryl-substituted 4-hydroxypyridine derivatives and their palladium-catalyzed coupling reactions. J Org Chem. 2010;75:726–732. 30 Pan Y, Ruhland B, Holmes CP. Use of a perfluoroalkylsulfonyl (PFS) linker in a “traceless” synthesis of biaryls through Suzuki cleavage. Angew Chem Int Ed Engl. 2001;40:4488–4491. 31 Gerfaud T, Neuville L, Zhu J. Palladium-catalyzed annulation of acyloximes with arynes (or alkynes): synthesis of phenanthridines and isoquinolines. Angew Chem Int Ed Engl. 2009;48:572–577. 32 Chen M-W, Duan Y, Chen Q-A, Wang D-S, Yu C-B, Zhou Y-G. Enantioselective Pd-catalyzed hydrogenation of fluorinated imines: facile access to chiral fluorinated amines. Org Lett. 2010;12(21):2010. 33 (a) Huang YZ, Zhou QL. Studies on the Pd catalyzed reaction of perfluoroalkyl and polyfluoroalkyl iodides wits tertiary amines. Tetrahedron Lett. 1986;27:2397–2400. (b) Huang Y-Z, Zhou QL. Nickel-, palladium-, and platinum-catalyzed reactions of perfluoro- and polyfluoroalkyl iodides with tertiary amines. J Org Chem. 1987;52:3552–3558. 34 Ishihara T, Kuroboshi M, Okada Y. New efficient palladium-catalyzed perfluoroalkylation of...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.