Pawar / Ronge / Balasubramaniam | Techno-Societal 2016 | E-Book | sack.de
E-Book

E-Book, Englisch, 1088 Seiten, eBook

Pawar / Ronge / Balasubramaniam Techno-Societal 2016

Proceedings of the International Conference on Advanced Technologies for Societal Applications

E-Book, Englisch, 1088 Seiten, eBook

ISBN: 978-3-319-53556-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume originates from the proceedings of a multidisciplinary conference, Techno-Societal 2016 in Maharashtra, India, that brings together faculty members of various engineering colleges to solve Indian regional relevant problems under the guidance of eminent researchers from various reputed organizations.The focus is on technologies that help develop and improve society, in particular on issues such as the betterment of differently abled people, environment impact, livelihood, rural employment, agriculture, healthcare, energy, transport, sanitation, water, education. This conference aims to help innovators to share their best practices or products developed to solve specific local problems which in turn may help the other researchers to take inspiration to solve problems in their region. On the other hand, technologies proposed by expert researchers may find applications in different regions. This back and forth process for local-global interaction will help in solving local problems by global approach and help in solving global problems by improving local conditions.
Pawar / Ronge / Balasubramaniam Techno-Societal 2016 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;5
2;Contents;7
3;Deployable Societal Technologies;18
4;1 Application of Nuclear Spin-Offs for Societal Development;19
4.1;1 AKRUTI Programme [1, 2];20
4.2;2 Demonstration of AKRUTI;21
4.3;3 Observations;21
4.4;4 Rural Techno-entrepreneurship [3];22
4.5;5 Consultancy;23
4.6;6 DAE Out Reach Centre (DAE ORC) [4, 2];23
4.7;7 XII Plan Project—DTDDF [4];24
4.8;8 Corporate Social Responsibility (CSR) Model;24
4.9;9 Conclusion—CILLAGE;25
4.10;References;25
5;2 Role of BARC Technologies in Agriculture for Benefit of Farming Community in India;26
5.1;1 Technologies for Mutant Seeds;26
5.2;2 Technologies for Soil Health;27
5.3;3 Technologies for Pest Control;28
5.4;4 Food Preservation Technology;29
5.5;5 Conclusion;29
5.6;References;29
6;3 Use of Photochemical Machining Technology for Producing Metal Artwork;31
6.1;1 Introduction;31
6.2;2 Procedure;32
6.2.1;2.1 Using Electricity—Traditional Photochemical Machining Process;32
6.2.2;2.2 Without Electricity—Screen Printing Method;33
6.3;3 Development of PCM Process for Artisans;34
6.3.1;3.1 Photo Tool Development for Artisans;34
6.3.2;3.2 Selection of Metal;36
6.3.3;3.3 Workshops for Artisans;36
6.4;4 Commercial Product Development;37
6.4.1;4.1 Exhibition in Kartiki Vari at Pandharpur;37
6.4.2;4.2 Commercial Products;38
6.4.3;4.3 Generation Entrepreneurs for PCM Based Artwork;38
6.5;5 Conclusions;39
6.6;References;39
7;4 RuTAG IIT Bombay Floating Fish Cages for Livelihood Opportunities for Tribals in Dimbhe Area;41
7.1;1 Introduction;41
7.1.1;1.1 Objective;41
7.1.2;1.2 About Shashwat;42
7.2;2 Need for the Intervention;42
7.2.1;2.1 Dimbhe Dam and the Struggle of the Local Communities;42
7.2.2;2.2 Introducing Aquaculture in Dimbhe Dam;42
7.2.3;2.3 Challenges Faced by the Tribals;43
7.3;3 The RuTAG IIT Bombay Intervention;43
7.3.1;3.1 Literature Review;43
7.3.2;3.2 RuTAG IIT Bombay Fish Cage Structure;44
7.4;4 Impact Analysis;45
7.4.1;4.1 Livelihood;46
7.4.2;4.2 Women Empowerment;47
7.4.3;4.3 Rewards and Recognitions;47
7.5;5 Conclusion;48
7.6;6 Scope for Future Dissemination;48
7.7;7 Recommendations for Future Research;49
7.8;Acknowledgements;49
7.9;References;49
8;5 Evaluation of Multiple Hydrometerological Factors for Prioritization of Water Stress Areas in the Upper Yerala River Basin, Satara, Maharashtra, India;50
8.1;1 Introduction;50
8.2;2 Study Area;51
8.3;3 Methodology;53
8.4;4 Results and Discussions;54
8.4.1;4.1 Groundwater Recharge;54
8.4.2;4.2 Groundwater Draft;54
8.4.3;4.3 Population;56
8.4.4;4.4 Abstraction Structures;58
8.4.5;4.5 Groundwater Level;59
8.4.6;4.6 Rainfall;59
8.5;5 Conclusions;62
8.6;References;63
9;6 Design of Improved Biomass Cook Stove for Domestic Utility;65
9.1;1 Introduction;65
9.2;2 Experimental Studies on Improved Cook Stove;67
9.3;3 Results and Discussions;69
9.3.1;3.1 Results of IBCS Testing;69
9.3.1.1;3.1.1 Roti Making Test;73
9.3.2;3.2 Heat Transfer Analysis;73
9.4;4 Conclusions;74
9.5;References;74
10;7 Computational and Experimental Investigations on Small Horizontal Axis Wind Turbine for Household Applications;76
10.1;1 Introduction;76
10.2;2 Airfoil and Wind Turbine Basics;77
10.3;3 Computational Studies on Small Scale HAWT;78
10.4;4 Experimental Studies on Small Scale HAWT;80
10.5;5 Results and Discussions;81
10.6;6 Conclusions;84
10.7;References;84
11;8 Computational and Experimental Studies on Effect of Artificial Roughness on Performance of Solar Air Heater;85
11.1;1 Introduction;85
11.2;2 Methodology;86
11.3;3 Results and Discussions;89
11.4;4 Conclusions;94
11.5;References;94
12;9 Design and Development of Novel Mini Wind Power Turbine Set;95
12.1;1 Introduction;95
12.2;2 Design of Turbine;96
12.3;3 Fabrication of Turbine;96
12.4;4 Testing of Mini Wind Turbine;98
12.5;5 Conclusion;100
12.6;References;101
13;10 Treadle Pump Operation with Rotary Motion;102
13.1;1 Introduction;102
13.2;References;109
14;11 Biofuels—Sustainable Alternative to Petroleum (Fossil Fuels) and New Revenue for Farmers;110
14.1;1 Introduction;110
14.2;2 Present Scenario in India;111
14.3;3 Biofuel;111
14.3.1;3.1 Types of Biofuels;111
14.3.1.1;3.1.1 Ethanol;111
14.3.1.2;3.1.2 Biodiesel;112
14.4;4 Properties of Biofuel;112
14.4.1;4.1 Properties of Ethanol Oil Compared to the Petrol;112
14.4.2;4.2 Properties of Biodiesel Compared to Diesel Oil;112
14.5;5 Feedstock to Produce Biofuels;113
14.5.1;5.1 Ethanol;113
14.5.2;5.2 Biodiesel;113
14.6;6 Biofuel Production;113
14.6.1;6.1 Ethanol;114
14.6.2;6.2 Biodiesel;114
14.7;7 Sustainability of Biofuels with Respect to Petroleum Fuels;114
14.7.1;7.1 Effect on Engine Parameters and Emissions;114
14.7.1.1;7.1.1 Effect on Exhaust Emissions;114
14.7.1.2;7.1.2 Engine Performance;115
14.7.1.3;7.1.3 Durability of Engine;115
14.7.2;7.2 Environmental Considerations;115
14.7.3;7.3 Benefits to the Country;116
14.8;8 Biofuels as a New Revenue for the Farmer;116
14.9;9 Conclusion;117
14.10;References;117
15;12 Microcontroller Based Automatic Drip Irrigation System;118
15.1;1 Introduction;118
15.1.1;1.1 Components;119
15.2;2 Irrigation;119
15.2.1;2.1 Types of Irrigation;120
15.3;3 Methodology;120
15.4;4 System Architecture;121
15.5;5 Results and Discussions;122
15.6;6 Conclusion;124
15.7;References;124
16;13 Sustainable Raft Based Hydroponic System for Growing Spinach and Coriander;125
16.1;1 Introduction;125
16.2;2 Materials and Procedures;126
16.2.1;2.1 Seedlings and Cups;126
16.3;3 Results and Discussion;129
16.4;4 Conclusion;132
16.5;References;133
17;14 Effect of Change in Vacuum Pressure on the Performance of Solar Dryers;134
17.1;1 Introduction;134
17.2;2 Drying Process on Psychrometric Chart;135
17.3;3 Experimental Investigation;136
17.4;4 Results and Discussion;136
17.4.1;4.1 Drying Time Versus Weight of Grapes;136
17.4.2;4.2 Drying Time Versus Drying Rate;137
17.4.3;4.3 Drying Time Versus Moisture Content;138
17.4.4;4.4 Drying Time Versus Moisture Loss;138
17.5;5 Conclusions;139
17.6;References;139
18;15 Wireless Healthcare Monitoring System;141
18.1;1 Introduction;141
18.2;2 Literature Review;142
18.3;3 System Architecture;143
18.3.1;3.1 Node Architecture;144
18.3.2;3.2 System Flow Chart;144
18.3.3;3.3 Step of Flow Graph;144
18.4;4 Experimental Evaluation;145
18.4.1;4.1 Heartbeat and Stress Sensor;146
18.4.2;4.2 Temperature Sensor;147
18.4.3;4.3 Accelerometer Sensor;147
18.4.4;4.4 GUI and Alert Message;147
18.5;5 Conclusion;150
18.6;References;150
19;16 Optimization of Process Parameters for Shutter Type Vertical Axis Wind Turbine;152
19.1;1 Introduction;152
19.2;2 Methodology;153
19.2.1;2.1 Experimentation Model of STVAWT;153
19.2.2;2.2 Design of Experiments;154
19.3;3 Results and Discussion;155
19.4;4 Conclusion;156
19.5;References;157
20;17 An Anthropometric Data of Cycle Rickshaw Operators to Approach Ergonomics in Cycle Rickshaw Design;158
20.1;1 Introduction;158
20.1.1;1.1 Cycle Rickshaw;158
20.1.2;1.2 Cycle Rickshaw Operators;159
20.2;2 Research Methodology for Pilot Study;159
20.2.1;2.1 Motivation and Research Objective;159
20.2.2;2.2 Research Instrument;160
20.2.3;2.3 Survey Administration;160
20.2.4;2.4 Respondents’ Profiles;160
20.2.5;2.5 Variables;160
20.2.6;2.6 Hypotheses;161
20.3;3 Results and Discussion;161
20.3.1;3.1 Anthropometric Data;161
20.3.2;3.2 Anthropology of Indian Cycle Rickshaw Operator;163
20.3.3;3.3 Hypothesis Testing;163
20.4;4 Variable Factors Consider for Ergonomic Design of Cycle Rickshaw Puller;167
20.4.1;4.1 Crank Length;167
20.4.2;4.2 Seat Tube Angle;168
20.4.3;4.3 Speed Ratio;168
20.4.4;4.4 Wheel Diameter;169
20.4.5;4.5 Load;169
20.4.6;4.6 Kinematics of Pedaling;169
20.5;5 Result Analysis;170
20.6;6 Conclusion;171
20.7;Acknowledgements;171
20.8;References;171
21;18 Analysis of Thermal Performance of Serpentine Tube in Tube Heat Exchanger;173
21.1;1 Introduction;174
21.2;2 Experimental Setup;175
21.3;3 Mathematical Analysis;176
21.3.1;3.1 Analytical Calculations;176
21.3.2;3.2 Numerical Calculations;177
21.4;4 Boundary Conditions;179
21.5;5 Result and Discussions;180
21.6;6 Conclusions;185
21.7;References;186
22;19 Experimental Performance Evaluation on S.I. Engine with Gasoline and Liquefied Petroleum Gas as Fuel;187
22.1;1 Introduction;187
22.2;2 Experimental Detail;188
22.2.1;2.1 Selection of Fuel;188
22.2.2;2.2 Experimental Setup;188
22.2.2.1;2.2.1 S.I. Engine;188
22.2.2.2;2.2.2 Fuel Intake System;188
22.2.2.3;2.2.3 Braking System;189
22.2.2.4;2.2.4 Coupling of Engine with Dynamometer and Speed Measurement;190
22.3;3 Experiment Test Parameter;191
22.3.1;3.1 Torque;191
22.3.2;3.2 Break Power;191
22.3.3;3.3 Exhaust Emissions;192
22.4;4 Results and Discussions;192
22.4.1;4.1 Exhaust Emissions;192
22.4.2;4.2 Break Power and Torque;193
22.4.3;4.3 Speed and Torque;194
22.5;5 Conclusion;195
22.6;References;195
23;20 A Review on the Green Supply Chain Management (GSCM) Practices, Implementation and Study of Different Framework to Get the Area of Research in GSCM;196
23.1;1 Introduction;196
23.2;2 Literature Review on GSCM;197
23.2.1;2.1 Concept of GSCM;197
23.2.2;2.2 Principal and Practices of GSCM;198
23.2.3;2.3 Implementation and Frame Works;199
23.2.4;2.4 Evaluation and Performance of GSCM;200
23.3;3 Discussion and Conclusion;201
23.4;References;201
24;21 Design and Performance Evaluation of Low-Cost, Innovative, Efficient Small-Scale Wind Power Generation for Rural Community of India;203
24.1;1 Introduction;204
24.2;2 Design of HAWT System;205
24.2.1;2.1 Design of Blade;207
24.2.2;2.2 Selection of Aerofoil Section;208
24.3;3 Construction of HAWT;208
24.4;4 General Characteristics of 500 W Small Wind Turbine;210
24.5;5 Testing of HAWT;211
24.6;6 Performance Evaluation of Horizontal Axis Wind Machine;212
24.7;7 Performance Comparison;213
24.8;8 Conclusions;214
24.9;References;215
25;22 Design Modification of Biogas Digester to Avoid Scum Formation at the Surface;216
25.1;1 Introduction;216
25.2;2 Background Information;217
25.2.1;2.1 Biogas Characteristics;217
25.2.2;2.2 Failure Causes of Biogas Plant;218
25.2.3;2.3 Rheological Properties;218
25.3;3 Numerical Methods;219
25.3.1;3.1 Mixing;219
25.3.2;3.2 Governing Equations;220
25.4;4 Proposed Digester Design for Surface Velocity Improvement;223
25.4.1;4.1 Problem Statement;223
25.5;5 Result and Discussion;224
25.5.1;5.1 Based on Surface Velocity Maximization;225
25.6;6 Conclusion;227
25.7;References;228
26;Sensor, Image and Data Driven Societal Technologies;229
27;23 Social Influence as a Parameter to Prioritize Social Problems;230
27.1;1 Introduction;230
27.2;2 Background;231
27.3;3 Proposed Algorithm;231
27.4;4 Experimental Analysis;235
27.5;5 Conclusion;236
27.6;References;237
28;24 An Accident Detection System (ADS) for the Mumbai-Pune Expressway Using Vehicular Communication;238
28.1;1 Introduction;238
28.2;2 The Proposed ADS System;239
28.3;3 Framework Design for the ADS;241
28.3.1;3.1 Initial Handshaking;241
28.3.1.1;3.1.1 Vehicle Vi Meets the First RSU R(Id);241
28.3.1.2;3.1.2 Verification of the Vehicle by the CCU;242
28.3.1.3;3.1.3 Shared Key Generation;242
28.3.2;3.2 Vehicle Message Dissemination;242
28.3.3;3.3 Vehicle Accident Data Processing;243
28.3.3.1;3.3.1 Speed Aggregation and Message Format;243
28.3.4;3.4 Central Control Unit;244
28.4;4 Conclusion;245
28.5;References;246
29;25 Data Mining Algorithms for Improving the Efficiency of Governance in Dynamic Social Systems: Case Study of Indian Caste and Tribe Reservations;247
29.1;1 Introduction;247
29.2;2 Conceptualization and Methodology;249
29.3;3 Data Analysis;249
29.4;4 Results and Interpretation;252
29.4.1;4.1 One-Class SVM Results;252
29.4.2;4.2 ONB Results;253
29.4.3;4.3 k-NN Results;254
29.4.4;4.4 PCA Results;255
29.4.5;4.5 Comparative Results;257
29.5;5 Conclusion and Reflection;258
29.6;Appendix;258
29.7;References;260
30;26 An Approach for PCA and GLCM Based MRI Image Classification;262
30.1;1 Introduction;262
30.2;2 Proposed Method;263
30.3;3 Proposed Methodology;263
30.3.1;3.1 Feature Extraction Using PCA;264
30.3.2;3.2 Feature Extraction Using GLCM;265
30.3.3;3.3 Classification;267
30.3.4;3.4 Segmentation;268
30.4;4 Morphological Operators;268
30.5;5 Results;268
30.6;6 Conclusion;271
30.7;References;271
31;27 Urban Tree Canopy Detection Using Object-Based Image Analysis Approach for High-Resolution Satellite Imagery;272
31.1;1 Introduction;272
31.2;2 Study Area;273
31.3;3 Methodology;273
31.4;4 Results and Discussion;275
31.5;5 Conclusion;277
31.6;References;278
32;28 Delamination Study of Sandwich Beam Coupled with Piezoelectric Actuator Using Cohesive Surface Behavior;279
32.1;1 Introduction;279
32.2;2 Material and Dimensions;281
32.3;3 Methodology;283
32.4;4 Results and Discussions;284
32.5;5 Conclusions;287
32.6;References;287
33;29 Development of Methodology for Transforming CT Images Indicating Location and Size of Lung Cancer Nodule;288
33.1;1 Introduction;288
33.2;2 Objectives of Study;289
33.3;3 Dataset;290
33.4;4 Proposed Method;290
33.5;5 Experimental Results;293
33.6;6 Conclusion;296
33.7;References;296
34;30 A Driver Assistance System Using ARM Processor for Lane and Obstacle Detection;297
34.1;1 Introduction;297
34.1.1;1.1 Lane Detection;298
34.1.2;1.2 Obstacle Detection;298
34.2;2 Proposed System Model;299
34.2.1;2.1 Ultrasonic Sensor;300
34.2.2;2.2 Front Side Camera;300
34.2.3;2.3 Backside Camera;300
34.2.4;2.4 Safety Indicators;301
34.2.5;2.5 Display;301
34.2.6;2.6 DC Motors;301
34.3;3 Implementation;301
34.3.1;3.1 Connection Diagram;302
34.3.2;3.2 Flowchart;302
34.4;4 Experimental Results;303
34.5;5 Conclusion and Result Analysis;306
34.6;References;307
35;31 Multimodel PID and RST Controller to Control CSTR Process Using Gain Scheduling Technique;308
35.1;1 Introduction;308
35.2;2 Modeling of CSTR Process;309
35.3;3 Multiple Model PID Control Design;310
35.4;4 Multiple Model Self-tuning Regulator (RST) Design;312
35.4.1;4.1 Recursive Least Square Algorithm;312
35.4.2;4.2 Self-tuning Pole-Placement Control;313
35.5;5 Simulation Results and Discussions;314
35.6;6 Conclusion;318
35.7;References;319
36;32 Silkworm Eggs Counting System Using Image Processing Algorithm;320
36.1;1 Introduction;320
36.2;2 Proposed Method;322
36.2.1;2.1 Image Acquisition;323
36.2.2;2.2 Color Conversion;323
36.2.3;2.3 Two Stage Segmentation;324
36.2.4;2.4 Area Based Thresholding;326
36.2.5;2.5 Object Counting;326
36.3;3 Result and Discussion;327
36.4;4 Conclusion;327
36.5;Acknowledgements;327
36.6;References;328
37;33 Compression of Medical Images Using Lifting Scheme Based Bi-orthogonal CDF Wavelet Coupled with Modified Set Partitioning in Hierarchical Trees (SPIHT) Algorithm;329
37.1;1 Introduction;329
37.2;2 Lifting Scheme;329
37.2.1;2.1 Splitting;330
37.2.2;2.2 Lifting;330
37.2.3;2.3 Scaling;330
37.3;3 Bi-orthogonal Wavelets CDF 9/7;331
37.4;4 MSPIHT;332
37.5;5 Compression Quality Evaluation;333
37.6;6 Results;333
37.7;References;335
38;34 Various Traditional and Nature Inspired Approaches Used in Image Preprocessing;336
38.1;1 Introduction;336
38.2;2 Pre-processing;337
38.2.1;2.1 Layout Analysis/Zoning;337
38.2.2;2.2 Line Removal;337
38.2.3;2.3 Enhancing the Document (Cleaning and Smoothing);337
38.2.4;2.4 Thresholding/Binarization;338
38.2.5;2.5 Deskewing;338
38.2.6;2.6 Despeckle;338
38.2.7;2.7 Normalization;339
38.2.8;2.8 Character Segmentation;339
38.2.8.1;2.8.1 Edge Detection;339
38.3;3 Character Recognition;340
38.3.1;3.1 Template/Matrix Matching;340
38.3.2;3.2 Feature Extraction;340
38.3.2.1;3.2.1 Moments;341
38.3.2.2;3.2.2 Histogram;341
38.3.2.3;3.2.3 Hough Transform;341
38.3.2.4;3.2.4 Fourier Descriptors;342
38.3.2.5;3.2.5 Orientation Features;342
38.3.2.6;3.2.6 Topological Features;342
38.4;4 Conclusion;342
38.5;References;343
39;35 FPGA Based Adaptive Filter for Removal of Electromyogram Noise from Electrocardiogram Signal;344
39.1;1 Introduction;344
39.2;2 Proposed System;345
39.2.1;2.1 MIT-BIH ECG Database;345
39.2.2;2.2 LMS Adaptive Algorithm;346
39.3;3 Implementation Techniques;347
39.4;4 Results and Discussion;349
39.5;5 Conclusion;352
39.6;References;352
40;36 Feature Extraction of Surface EMG Using Wavelet Transform for Identification of Motor Neuron Disorder;353
40.1;1 Introduction;353
40.2;2 Related Work;354
40.3;3 Methodologies;355
40.4;4 Results and Discussions;356
40.5;5 Conclusion;360
40.6;Acknowledgements;362
40.7;References;363
41;37 Early Diagnosis of Diabetes by Retinopathy;364
41.1;1 Introduction;364
41.2;2 Related Work;365
41.3;3 Proposed Methodology;366
41.3.1;3.1 Explanation;367
41.4;4 Implementation and Results;370
41.4.1;4.1 Results;375
41.5;5 Conclusion;376
41.6;Acknowledgements;376
41.7;References;376
42;38 Optimal Location of TCSC Using Evolutionary Optimization Techniques;378
42.1;1 Introduction;378
42.2;2 Modeling of TCSC;379
42.3;3 Objective Function;380
42.3.1;3.1 Minimize the Active Power Loss;380
42.3.2;3.2 Maintain Voltage Profile;381
42.3.3;3.3 Minimize the Installation Costs;381
42.4;4 Implementation of TLBO for the Optimal Placement of TCSC;381
42.5;5 Test Results and Discussion;384
42.6;6 Conclusion;385
42.7;References;386
43;39 MATLAB Simulation Analysis for Removing Artifacts from EEG Signals Using Adaptive Algorithms;387
43.1;1 Introduction;387
43.2;2 Database;387
43.3;3 Adaptive Filter Algorithms;388
43.3.1;3.1 Least Mean Square Algorithm;388
43.3.2;3.2 Normalized Least Mean Square Algorithm;388
43.4;4 Artifacts;388
43.4.1;4.1 Electro-oculogram (EOG);389
43.4.2;4.2 Electromyogram (EMG);389
43.4.3;4.3 Electrocardiogram (ECG);389
43.5;5 Simulation Diagram;389
43.6;6 Results;390
43.6.1;6.1 Simulation Result for EOG Artifact Removing Using LMS Filter;390
43.6.2;6.2 Simulation Result for EOG Artifact Removing Using NLMS Filter;391
43.6.3;6.3 Simulation Result for EMG Artifact Removing Using LMS Filter;391
43.6.4;6.4 Simulation Result for EMG Artifact Removing Using NLMS Filter;392
43.6.5;6.5 Simulation Result for ECG Artifact Removing Using LMS Filter;392
43.6.6;6.6 Simulation Result for ECG Artifact Removing Using NLMS Filter;393
43.7;7 Conclusion;394
43.8;References;395
44;Mechatronics, Micro-Nano Related for Bio and Societal Applications;396
45;40 Effective Sensing Mechanisms and Techniques for Detection of E. coli Bacteria in Potable Water;397
45.1;1 Introduction;397
45.2;2 Tests for Water Contamination: Conventional and Contemporary;398
45.3;3 E. coli Biosensors: Substrates, Parameters and Techniques;399
45.4;4 Techniques Employed for E. coli Detection in Water;400
45.5;5 Challenges;404
45.6;6 Conclusion;404
45.7;Acknowledgements;404
45.8;References;404
46;41 Smart Materials for Biosensing Applications;406
46.1;1 Introduction;406
46.1.1;1.1 Smart Material Based Biosensors;407
46.2;2 Properties and Biosensing Application of the Smart Materials;408
46.2.1;2.1 Biosensing Properties of Smart Nanomaterial;408
46.2.2;2.2 Biosensing Properties of pH Sensitive Polymers;409
46.2.3;2.3 Biosensing Properties of Piezoelectric Materials;409
46.3;3 Fabrication Technique of Smart Materials and Strategies for Biosensing Modulation;410
46.3.1;3.1 Synthesis of Nanomaterial: Application in Biosensor;410
46.3.2;3.2 pH Sensitive and Stimuli Responsive Polymers Synthesis;412
46.3.3;3.3 Piezoelectric Materials for Biosensor Fabrication;412
46.4;4 Operating Principle of Biosensors Using Smart Materials;413
46.5;5 Conclusion and Outlook;414
46.6;Acknowledgements;414
46.7;References;414
47;42 Comparative Study to Improve Antenna Parameters of Multilayer Microstrip Patch Antenna;417
47.1;1 Introduction;417
47.2;2 Design Steps of Microstrip Antenna;418
47.3;3 Simulation Tool;420
47.4;4 Design Shapes;420
47.4.1;4.1 Simulated Results of Different Shape Multilayer MSA;420
47.5;5 Simulated Results of Multilayer Different Shapes MSA;421
47.5.1;5.1 Return Loss;421
47.5.2;5.2 Bandwidth;422
47.5.3;5.3 VSWR;423
47.5.4;5.4 Directivity;424
47.5.5;5.5 Gain;425
47.5.6;5.6 Radiation Pattern;426
47.6;6 Conclusion and Result Analysis;428
47.7;Acknowledgements;429
47.8;References;429
48;43 Investigation of Mechanical Behavior of Industry Waste and Al2O3 Reinforced Aluminium Matrix Composites by Powder Metallurgy Technique;430
48.1;1 Introduction;430
48.1.1;1.1 Matrix Material;431
48.1.2;1.2 Reinforcement Material;431
48.2;2 Experimentation;431
48.2.1;2.1 Metal Powder;432
48.2.2;2.2 Blending of Metal Powder;432
48.2.3;2.3 Compacting;433
48.2.4;2.4 Sintering;434
48.3;3 Results and Discussion;435
48.3.1;3.1 Ultimate Tensile Strength (UTS);435
48.3.2;3.2 Impact Strength;436
48.4;4 Conclusions;437
48.5;References;438
49;44 Phase Sensitive Detector: Fabrication, Processing, and Applications;439
49.1;1 Introduction;439
49.2;2 Experimental Details;440
49.2.1;2.1 Design and Fabrication Process;440
49.2.2;2.2 Operating Mechanism of PSD;440
49.3;3 Results and Discussions;441
49.4;4 Conclusions;442
49.5;References;442
50;45 Microbial Synthesis of Silver Nanoparticles Using Aspergillus flavus and Their Characterization;444
50.1;1 Introduction;444
50.2;2 Materials and Methods;445
50.2.1;2.1 Preparation of Cell Filtrate and Synthesis of Silver Nanoparticles;445
50.2.2;2.2 UV-Visible Characterization;445
50.2.3;2.3 XRD Measurements;445
50.2.4;2.4 FTIR Measurements;446
50.2.5;2.5 Scanning Electron Microscopy;446
50.2.6;2.6 TEM Measurements;446
50.3;3 Result and Discussion;446
50.3.1;3.1 Biosynthesis of Silver Nanoparticles;446
50.3.2;3.2 UV-Visible Spectra;447
50.3.3;3.3 XRD Analysis;447
50.3.4;3.4 SEM;448
50.3.5;3.5 FTIR Measurements;449
50.3.6;3.6 TEM;449
50.4;4 Conclusions;450
50.5;References;450
51;46 Shape Optimization of Microfluidic Pump Using Fluid-Structure Interaction Approach;452
51.1;1 Introduction;452
51.2;2 Numerical Modeling;453
51.2.1;2.1 Description of Micropump;453
51.2.2;2.2 Governing Equations;453
51.2.3;2.3 Boundary Conditions;454
51.3;3 Simulation Results and Parametric Study;454
51.3.1;3.1 Optimization of Divergence Angle and Diffuser Length;454
51.3.2;3.2 Optimization of Neck Width and Chamber Height;456
51.3.3;3.3 Optimization of Chamber Diameter and Diaphragm Thickness;457
51.4;4 Conclusion;457
51.5;References;458
52;47 Fabrication and Characterizations of Cu/CdS0.8Te0.2 Thin Film Schottky Junction Grown by Thermal Evaporation Technique;459
52.1;1 Introduction;459
52.2;2 Experimental;459
52.2.1;2.1 Preparation of Samples;460
52.3;3 Results and Discussion;460
52.3.1;3.1 XRD Analysis;460
52.3.2;3.2 SEM Analysis;461
52.3.3;3.3 Photo Sensing Analysis;462
52.3.4;3.4 I-V Characteristics of Schottky Diode;463
52.4;4 Conclusions;464
52.5;References;464
53;48 Kinetic and Thermodynamic Study of Mixed Crystals of Cadmium-Calcium Levo-Tartrate Dihydrate Grown in Silica Gel;466
53.1;1 Introduction;466
53.2;2 Experimental;466
53.3;3 Result and Discussion;467
53.3.1;3.1 Powder X-ray Diffraction;467
53.3.2;3.2 Thermal Analysis of CCT Crystal (TGA);468
53.3.3;3.3 Kinetic Parameter of Dehydration and Decomposition;470
53.3.4;3.4 Thermodynamic Parameter of Dehydration and Decomposition;471
53.4;4 Conclusion;472
53.5;References;473
54;49 Numerical Study on Microchannel Heat Sink with Asymmetric Leaf Pattern;474
54.1;1 Introduction;474
54.2;2 Numerical Simulation;477
54.2.1;2.1 Geometry of Microchannel;477
54.2.2;2.2 Governing Equations;478
54.2.3;2.3 Boundary Conditions;479
54.3;3 Results and Discussion;481
54.3.1;3.1 Velocity and Temperature Profile;481
54.3.2;3.2 Heat Transfer Characteristics;483
54.3.3;3.3 Pressure Drop Characteristics;483
54.4;4 Conclusions;485
54.5;References;486
55;50 Experimental Study of Thermal Energy Storage System Using Nanofluid;487
55.1;1 Introduction;487
55.2;2 Experimental Setup;488
55.3;3 Results and Discussions;488
55.3.1;3.1 Charging Process;488
55.3.2;3.2 Discharging Process;491
55.4;4 Conclusions;491
55.5;References;492
56;51 An Approach to Harness Energy by SnO2 Thin Film Electrode by Thermal Evaporation;493
56.1;1 Introduction;493
56.2;2 Experimental Detail;494
56.3;3 Results and Discussion;495
56.3.1;3.1 Structural and Morphology Analysis;495
56.3.2;3.2 CV, Charge/Discharge and Cyclic Stability Study;495
56.4;4 Conclusion;497
56.5;Acknowledgements;497
56.6;References;497
57;52 Efficient Electrodeposited Nickel Oxide Thin Films for Supercapacitor Electrode;499
57.1;1 Introduction;499
57.2;2 Experimental Details;500
57.3;3 Result and Discussions;501
57.3.1;3.1 X-ray Diffraction Study;501
57.3.2;3.2 Surface Morphology Study;501
57.3.3;3.3 Wettability Study;501
57.4;4 Supercapacitive Studies;502
57.4.1;4.1 Cyclic Voltammetry;502
57.4.2;4.2 Galvanostatic Charge–Discharge Studies;503
57.5;5 Conclusions;503
57.6;Acknowledgements;503
57.7;References;504
58;53 Effect of Waiting Time on Opto-electronic Properties of Antimony Doped Tin Oxide Thin Films for Transparent Conducting Oxide Applications;505
58.1;1 Introduction;505
58.2;2 Results and Discussion;506
58.2.1;2.1 Optical Properties;506
58.2.2;2.2 Electrical Properties;507
58.2.3;2.3 Figure of Merit;508
58.3;3 Conclusions;508
58.4;Acknowledgements;508
58.5;References;508
59;54 Nanoflakes MnO2 Thin Film as a Supercapacitor Electrode;509
59.1;1 Introduction;509
59.2;2 Experimental Details;510
59.2.1;2.1 Chemicals;510
59.2.2;2.2 Synthesis of MnO2 Thin Films;510
59.2.3;2.3 Characterization Techniques;510
59.3;3 Results and Discussions;511
59.3.1;3.1 Structural and Surface Morphological Studies;511
59.3.2;3.2 Supercapacitive Studies;512
59.3.2.1;3.2.1 Cyclic Voltammetric Study;512
59.3.2.2;3.2.2 Galvanostatic Charge-Discharge Study;513
59.4;4 Conclusions;514
59.5;Acknowledgements;515
59.6;References;515
60;55 Experimental Studies on Curvilinear Laser Bending of Thin Sheets;516
60.1;1 Introduction;516
60.2;2 Experimental Setup;518
60.2.1;2.1 CO2 Laser Machine Setup;518
60.2.2;2.2 Workpiece Holding Fixture;518
60.2.3;2.3 Workpiece Details;520
60.2.4;2.4 Irradiation Details;520
60.2.5;2.5 Bend Angle Measurement;520
60.3;3 Analysis of Results;521
60.3.1;3.1 Studies on Bend Angle;521
60.3.1.1;3.1.1 Effect of Laser Power;521
60.3.1.2;3.1.2 Effect of Scan Speed;522
60.3.2;3.2 Parabolic Heating with Step Irradiations;522
60.3.3;3.3 Variation in Bend Angle Along Scanning Path (Edge Effect);523
60.4;4 Conclusions;524
60.5;References;524
61;56 A Comparative Study on Mechanical and Tribological Properties of Epoxy Composites Filled with Nano-ZrO2 and Nano-Al2O3 Fillers;526
61.1;1 Introduction;526
61.2;2 Experimental;528
61.2.1;2.1 Resin System;528
61.2.2;2.2 Fillers;528
61.2.3;2.3 Fabrication of Epoxy Nanocomposites;528
61.2.4;2.4 Characterization;529
61.3;3 Results and Discussion;530
61.3.1;3.1 Mechanical Properties;530
61.3.2;3.2 Tribological Properties;531
61.4;4 Conclusions;533
61.5;References;534
62;Lab-Level Advanced Societal Technologies;535
63;57 Synthesis of TiO2 Nanofibers for Solar Cells and Their Analysis Using Statistical Tool—ANOVA;536
63.1;1 Introduction;536
63.2;2 Experimental Procedure;537
63.2.1;2.1 Materials;537
63.2.2;2.2 Preparation of TiO2;537
63.2.3;2.3 Electrospinning Experiments;537
63.2.4;2.4 Design of Experiments;538
63.3;3 Characterization;539
63.4;4 Results and Discussion;540
63.4.1;4.1 Optimization by One-Way ANOVA;540
63.4.2;4.2 Interaction Plots;541
63.5;5 Applications;541
63.6;6 Conclusion;542
63.7;References;542
64;58 Development of Experimental Setup for Measurement of Stored Hydrogen in Solids by Volumetric Method;543
64.1;1 Introduction;543
64.2;2 High Pressure Experimental Setup;544
64.2.1;2.1 High Vacuum System and Pressure Sensor;544
64.2.2;2.2 Temperature Controller, Temperature Indicator and Thermocouples;545
64.2.3;2.3 Reactor and Measuring Chamber;545
64.3;3 Methodology;546
64.4;4 Calibration of Experimental Setup;548
64.5;5 Conclusion;550
64.6;Acknowledgements;550
64.7;References;550
65;59 Optimization of Biodiesel Synthesis from Karanja Oil Using Heterogeneous Catalyst by Transesterification Process;552
65.1;1 Introduction;552
65.1.1;1.1 Importance;552
65.1.2;1.2 Biodiesel;552
65.1.3;1.3 Heterogeneouscatalyst;553
65.1.4;1.4 Transesterification Process;553
65.1.5;1.5 Steps for Transesterification Process;553
65.2;2 Experimental Setup for Biodiesel Production by Transesterification Process;554
65.3;3 Different Parameters Affecting the Transesterification Process;555
65.4;4 Results by Variation of Different Parameters Obtained for Karanja Oil with CaO Catalyst Are as Follows;555
65.4.1;4.1 Effect of Molar Ratio;555
65.4.2;4.2 Effect of Catalyst %;556
65.4.3;4.3 Effect of Reaction Temperature;557
65.4.4;4.4 Effect of Reaction Time;557
65.4.5;4.5 Effect of Reaction Speed;559
65.5;5 Conclusion;559
65.6;References;560
66;60 Parametric Studies on Thermo-electric Power Generation Using Micro Combustor;561
66.1;1 Introduction;561
66.2;2 Experimental Methodology;562
66.2.1;2.1 Micro Combustor Configuration;562
66.2.2;2.2 Details of Experimental Method;563
66.3;3 Results and Discussions;564
66.3.1;3.1 Thermal Characteristics and Flame Stability Limit;564
66.3.1.1;3.1.1 Effect of Thermal Conductivity of Heating Cup;564
66.3.1.2;3.1.2 Effect of Porous Media on the Flame Stability;565
66.3.2;3.2 Integration of the Combustor and Thermoelectric Generators;567
66.4;4 Conclusion;568
66.5;References;568
67;61 Validation of in House PCR Using IS6110 for Detection of M. tuberculosis and Its Comparison with ZN Staining, Cultures and RT PCR Kit Methods;570
67.1;1 Introduction;570
67.2;2 Methodology;571
67.2.1;2.1 Sample Collection;571
67.2.2;2.2 Sample Processing;571
67.2.3;2.3 Mycobacterial DNA Extraction from Sputum;572
67.2.4;2.4 Analysis of Amplified Product;573
67.2.5;2.5 RT-PCR with Commercial Kit;573
67.2.6;2.6 Statistical Analysis;573
67.3;3 Results;574
67.3.1;3.1 In-House Conventional PCR;574
67.3.2;3.2 AFB Smear Negative—Culture Positive and PCR Positive;574
67.3.3;3.3 Comprehensive Comparison of Different Techniques;575
67.4;4 ROC Curve Analysis;576
67.5;5 Conclusion;578
67.6;References;578
68;62 Novel Method for Fabrication and Characterization Porous Structure Using Rapid Prototyping and Thermal Gradient Method;581
68.1;1 Introduction;581
68.2;2 Method of Preparation of Hydroxyapatite;582
68.3;3 Particle Size Distribution;583
68.4;4 Construction and Working Principle;583
68.5;5 Layer-Wise Slurry Deposition (LSD) Process;584
68.5.1;5.1 Mechanism;586
68.6;6 Characterization of Fabricated Hydroxyapatite Bio Film;587
68.6.1;6.1 FT-IR Analysis;587
68.6.2;6.2 SEM Analysis;588
68.6.3;6.3 XRD Analysis;589
68.6.4;6.4 Elemental Analysis;589
68.6.5;6.5 DTA and TGA Analysis;589
68.7;7 Conclusions;591
68.8;References;591
69;63 Role of Gene Xpert in Early Diagnosis and Treatment of Tuberculosis;592
69.1;1 Introduction;592
69.2;2 Materials and Methods;593
69.2.1;2.1 Method;593
69.3;3 Results and Discussion;594
69.4;4 Conclusion;595
69.5;References;596
70;64 Synthesis and Characterization of MoS2-Graphene Nanocomposite;597
70.1;1 Introduction;597
70.2;2 Experimental;598
70.2.1;2.1 Synthesis of Graphene Nanosheets (RGO);598
70.2.2;2.2 Synthesis of MoS2/Graphene Nanocomposite;598
70.2.3;2.3 Characterization;599
70.3;3 Results and Discussion;599
70.4;4 Conclusion;601
70.5;References;601
71;65 Heat Transfer Intensification with Different Width Swirl Generator;603
71.1;1 Introduction;603
71.2;2 Methodology;604
71.2.1;2.1 Experimental Procedure;604
71.2.2;2.2 Heat Transfer Calculations;604
71.2.2.1;2.2.1 Reynolds Number Evaluation;604
71.2.2.2;2.2.2 Nusselt Number Evaluation;605
71.2.2.3;2.2.3 Friction Factor Evaluation;606
71.3;3 Thermal Characteristic;607
71.3.1;3.1 Heat Transfer Characteristics;607
71.3.2;3.2 Overall Enhancement Characteristics;609
71.4;4 Conclusions;610
71.5;References;611
72;66 Synthesis and Characterization of ZnO Nanorod Array on FTO Glass by Using Hydrothermal Method;612
72.1;1 Introduction;612
72.2;2 Experimental;613
72.2.1;2.1 Characterizations;614
72.3;3 Results and Discussion;614
72.4;4 Conclusions;615
72.5;Acknowledgements;616
72.6;References;616
73;67 Design and In-Vitro Evaluation of Nicorindil Biphasic Drug Delivery System for Angina Pectoris;617
73.1;1 Introduction;617
73.2;2 Materials;618
73.3;3 Methodology;619
73.3.1;3.1 Preparation of Fast Release Component [5];619
73.3.2;3.2 Preparation of Prolonged-Release Component (Mini-Tablets);619
73.3.3;3.3 Preparation of Multiple Compressed Tablets;620
73.3.4;3.4 Evaluation of Tablets [6, 7];620
73.3.4.1;3.4.1 Weight Variation;620
73.3.4.2;3.4.2 In-Vitro Dissolution Studies;620
73.4;4 Results and Discussion;621
73.4.1;4.1 Friability;621
73.4.2;4.2 Hardness;621
73.4.3;4.3 Thickness;621
73.4.4;4.4 Drug Content;622
73.4.5;4.5 IR Spectra of F4 Formulation;622
73.5;References;624
74;68 SILAR Synthesis and Cyclic Voltammetric Study of PPy-Cu(OH)2 Composite Flexible Electrodes for Supercapacitors;625
74.1;1 Introduction;625
74.2;2 Experimentation;626
74.2.1;2.1 Precursors;626
74.2.2;2.2 Electrode Preparation;627
74.2.3;2.3 Characterizations;627
74.2.3.1;2.3.1 Structural Characterizations;627
74.2.3.2;2.3.2 Electrochemical Characterizations;628
74.3;3 Results and Discussion;628
74.3.1;3.1 Film Formation Mechanism;628
74.3.2;3.2 Physical Characterizations;629
74.3.3;3.3 Cyclic Voltammetry;630
74.4;4 Conclusions;631
74.5;References;632
75;69 Root Canal Filling Process Enhancement in Simulated Dental Blocks Using a Novel Device;633
75.1;1 Introduction;633
75.2;2 Materials and Methodology Adopted for Obturation of the Root Canal System;635
75.2.1;2.1 Obturation of the Root Canal System Involves;635
75.2.2;2.2 Filling Canals with GP Using Dual Energy Technique;635
75.3;3 Weight Analysis of Blocks After Filling GP;637
75.3.1;3.1 Comparison of Blocks;637
75.3.2;3.2 Weight Analysis of Dental Blocks;638
75.3.3;3.3 Evaluation of Percentage GP Enhancement in Simulated Dental Blocks;638
75.3.3.1;3.3.1 Blocks Utilized in the Current Study;638
75.3.3.2;3.3.2 Percentage Enhancement in GP Compaction (with and Without Vibration);638
75.4;4 Mass of GP Compacted in Root Canal;638
75.5;5 Volume of Root Canal Based on Mass of Material Compacted;639
75.6;6 Statistical Analysis Using ‘Student-t test’;639
75.6.1;6.1 Case 1: For Varying Excitation Frequencies 10–100 Hz at Dental Tip;639
75.6.2;6.2 Case 2: For Constant Excitation Frequencies of 50 Hz at Dental Tip;641
75.7;7 Statistical Analysis Using One Way Analysis of Variance;641
75.8;8 Conclusion;642
75.9;Acknowledgements;643
75.10;References;643
76;Manufacturing and Fabrication Processes for Societal Applications;644
77;70 Analysis of Surface Integrity and Dimensional Accuracy During Thin-Wall Machining;645
77.1;1 Introduction;645
77.2;2 Experimental Details;646
77.3;3 Results and Discussion;646
77.3.1;3.1 Analysis of Dimensional Accuracy;648
77.3.2;3.2 Analysis of Surface Finish and Surface Integrity;649
77.4;4 Conclusions;651
77.5;Acknowledgements;651
77.6;References;651
78;71 Wear Behaviour of D-Gun Sprayed Coatings on Ductile Cast Iron;653
78.1;1 Introduction;653
78.2;2 Experimental;654
78.2.1;2.1 Materials and Coatings;654
78.2.2;2.2 Coating Powders;655
78.2.3;2.3 Deposition of Coatings by Detonation Spray Process;655
78.2.4;2.4 Wear Test Using Pin-on-Disc Apparatus;656
78.2.4.1;2.4.1 Experimental Set up;656
78.2.4.2;2.4.2 Sliding Wear Studies;656
78.2.4.3;2.4.3 Wear Rate;657
78.2.4.4;2.4.4 Wear Volume;657
78.2.5;2.5 Field Trial and Assessment;658
78.3;3 Result and Discussion;659
78.3.1;3.1 Wear Behavior;659
78.3.1.1;3.1.1 Laboratory Test;659
78.3.1.2;3.1.2 Field Trial Observations;660
78.3.1.3;3.1.3 Weight Loss and Wear Rate Assessment;660
78.4;4 Conclusions;661
78.5;References;661
79;72 Experimental Analysis of Different Compositions of Carbon Fiber/Epoxy Composite and Its Application in Leaf Spring;662
79.1;1 Introduction;662
79.2;2 Experimental Procedure;663
79.2.1;2.1 Materials and Methods;663
79.3;3 Results and Discussion;664
79.3.1;3.1 Mechanical Testing;664
79.3.2;3.2 Experimental Testing Using FFT Analyzer;666
79.3.2.1;3.2.1 Modal Analysis;666
79.3.2.2;3.2.2 Comparison Between Experimental and FEA Results;668
79.3.2.3;3.2.3 Comparison Between Steel and Composite Leaf Spring;668
79.4;4 Conclusions;669
79.5;References;669
80;73 Development of a Friction Welded Bimetallic Joints Between Titanium and 304 Austenitic Stainless Steel;671
80.1;1 Introduction;671
80.2;2 Experimental Method;672
80.3;3 Results and Discussion;673
80.3.1;3.1 Mechanical Properties;673
80.3.2;3.2 Microstructural Observations;676
80.3.3;3.3 Fracture Morphology Studies;677
80.4;4 Conclusion;678
80.5;References;678
81;74 Developing an Empirical Relationship to Predict Tensile Strength and Micro Hardness of Friction Stir Welded Aluminium Alloy Joints;680
81.1;1 Introduction;680
81.2;2 Experimental;680
81.2.1;2.1 Selection of Material;681
81.2.2;2.2 Identification of Important Friction Stir Welding Parameters;681
81.2.3;2.3 Development of Design Matrix;682
81.2.4;2.4 Selection of Mathematical Model;682
81.2.5;2.5 Development of Model for Tensile Strength;685
81.2.6;2.6 Development of Model for Percentage Elongation;687
81.2.7;2.7 Development of Model for Micro Hardness;688
81.3;3 Conclusions;689
81.4;References;689
82;75 New Design Approach of Helical Coil Spring for Longitudinal and Translational Invariance by Using Finite Element Analysis;690
82.1;1 Introduction;690
82.2;2 Design of Helical Coil Spring;690
82.2.1;2.1 Variation of Maximum Shear Stress Theoretically and Maximum Shear Stress Analytically with Load;691
82.3;3 Finite Element Analysis of Helical Compression Spring by Using ANSYS;691
82.4;4 Experimental Approach for Analysis;693
82.4.1;4.1 Testing of Helical Compression Spring for Load and Deflection;693
82.5;5 Probabilistic Design of Helical Coil Spring for Longitudinal Invariance by Using Finite Element Method;694
82.6;6 Probabilistic Design of Helical Coil Spring for Translational Invariance by Using Finite Element Method;696
82.7;7 Result and Discussion;696
82.7.1;7.1 Comparison Based on Load Verses Deflection;696
82.7.2;7.2 Comparison Results of Maximum Shear Stress and Deflection;696
82.8;8 Conclusion;699
82.9;References;699
83;76 Material Removal Rate and Surface Roughness Optimization in WEDM on Tool Steel EN-31 Using Taguchi Approach;700
83.1;1 Introduction;700
83.2;2 Materials and Methods;702
83.3;3 Design of Experiments;703
83.4;4 Taguchi’s Optimization Technique;704
83.5;5 Results and Discussion;706
83.5.1;5.1 Effect on Material Removal Rate (MRR);706
83.5.2;5.2 Effect on Surface Roughness (SR);708
83.6;6 Confirmation Experiment and Conclusion;710
83.7;References;711
84;77 Automatic Gear Change Mechanism for Two-Wheeler Automobiles;712
84.1;1 Introduction;712
84.2;2 System Description;713
84.2.1;2.1 Complete Product Package;713
84.2.2;2.2 Selection of Sensors, Controller and Actuator;714
84.2.3;2.3 Interfacing and Control;716
84.2.4;2.4 Adaptation with Existing Automobile;717
84.3;3 Results;719
84.4;4 Discussion and Future Scope;720
84.4.1;4.1 Discussion and Comparison with Existing Methods;720
84.4.2;4.2 Future Scope;721
84.5;5 Conclusion;721
84.6;References;721
85;78 Analysis of Water Lubricated Bearing with Different Features to Improve the Performance: Green Tribology;722
85.1;1 Introduction;722
85.2;2 Model of Plain Hydrodynamic Journal Bearing;723
85.3;3 CFD Model—Analysis;724
85.3.1;3.1 Governing Equations;724
85.3.2;3.2 Parameters and Variables;724
85.3.2.1;3.2.1 Parameters;724
85.3.2.2;3.2.2 Variables;724
85.3.3;3.3 Material Properties and Boundary Conditions;725
85.3.3.1;3.3.1 Material Properties;725
85.3.3.2;3.3.2 Boundary Conditions;725
85.3.4;3.4 Analysis and Results;726
85.3.4.1;3.4.1 Analysis of Plain Journal Bearing;726
85.3.4.2;3.4.2 Results of Plain Journal Bearing;726
85.3.4.3;3.4.3 Analysis of Journal Bearing with Different Surface Features;727
85.3.4.4;3.4.4 Results of Journal Bearing with Different Surface Features;728
85.4;4 Conclusions;729
85.5;References;729
86;79 Design and Construction of Briefcase Type Portable Solar Dryer;731
86.1;1 Introduction;731
86.2;2 Constructions;733
86.2.1;2.1 Solar Panel;733
86.2.2;2.2 Battery;733
86.2.3;2.3 Exhaust Fans;733
86.2.4;2.4 Reflector;733
86.2.5;2.5 Glass;734
86.2.6;2.6 Heating Element;734
86.2.7;2.7 Assembly;734
86.3;3 Experimentation;735
86.3.1;3.1 Experimentation on Potato;735
86.3.2;3.2 Experimentation on Tulasi;736
86.4;4 Conclusions;737
86.5;References;738
87;80 Crashworthiness Improvement for Rollover of Bus Using FEA;739
87.1;1 Introduction;739
87.2;2 Rollover Analysis of Bus;740
87.2.1;2.1 Theory of Rollover Test on Bus;741
87.3;3 Finite Element Modelling;741
87.3.1;3.1 CAD Model (Geometric Model);741
87.3.2;3.2 Meshing of Bus Structure;742
87.4;4 Numerical Analysis;743
87.4.1;4.1 Design Suggestions for New Bus Model;743
87.4.2;4.2 Rollover with Redesigned Model (Stiffer/New Model);745
87.5;5 Results;745
87.6;6 Conclusion;745
87.7;References;746
88;81 Optimization of P-GMAW Welding Parameters Using Taguchi Technique for SS304L Pipes;747
88.1;1 Introduction;747
88.2;2 Literature Review;748
88.3;3 Experimental Details;749
88.3.1;3.1 Material Selection;749
88.3.2;3.2 Taguchi Technique;750
88.3.3;3.3 S/N Ratio;750
88.3.4;3.4 Experimental Parameter;751
88.3.5;3.5 Experimental Work;751
88.4;4 ANOVA Table and Response Calculation;753
88.5;5 Result and Discussion;754
88.6;6 Verification Experiment;756
88.7;7 Conclusion;756
88.8;Acknowledgements;757
88.9;References;757
89;82 Impact Analysis and Topology Optimization of Pultruded Automotive Bumper;758
89.1;1 Introduction;758
89.2;2 Theoretical Calculations;759
89.3;3 Material Data;759
89.3.1;3.1 Correlation with FEA;759
89.4;4 Experimental Data;760
89.4.1;4.1 Three Point Bend Test;760
89.4.2;4.2 Ball Impact Test;760
89.5;5 FEA Analysis;762
89.5.1;5.1 Three Point Bend Test;762
89.5.2;5.2 Ball Drop Test;762
89.6;6 Result and Discussions;763
89.7;7 Topology Optimization;764
89.7.1;7.1 Load Tracking in Impact;764
89.7.2;7.2 Cross Section Optimization;764
89.7.3;7.3 Result and Discussions;766
89.8;8 Conclusion;766
89.9;References;766
90;83 Simulation of Micro-indentation Process of Black NiAl Coated Aluminum Substrate Using FEM;767
90.1;1 Introduction;767
90.2;2 Material Preparation and Experimentation;768
90.2.1;2.1 Coating Process of Black NiAl Coating on Aluminum Substrate;768
90.2.2;2.2 Micro-indentation Experiment;768
90.3;3 Finite Element Procedure;769
90.4;4 Results and Discussion;771
90.4.1;4.1 Experimental Results;771
90.4.2;4.2 Finite Element Analysis;772
90.5;5 Conclusion;775
90.6;References;775
91;84 Assembly Method of Pre Twisted Steam Turbine Blades;776
91.1;1 Introduction;776
91.2;2 Method of Pre Twisted Steam Turbine Blade Assembly;778
91.3;3 System of Pre Twisted Blade Assembly;778
91.3.1;3.1 Detailed View of Blade Assembly;778
91.3.2;3.2 Drawing Description;778
91.3.3;3.3 Fixture Assembly;782
91.3.4;3.4 Closing Blade Assembly;783
91.4;4 Assembly Procedure;784
91.5;5 Natural Frequency Test of Pre Twisted Blades;785
91.5.1;5.1 Measurement System;785
91.5.2;5.2 Measurements;785
91.5.3;5.3 Procedure;785
91.5.4;5.4 Comparison of Natural Frequency of Old Rotor Assembly and New Rotor Assembly;786
91.6;6 Conclusions;788
91.7;References;788
92;85 Thermal Performance of Parabolic Dish Water Heater with Helical Coiled Receiver;789
92.1;1 Introduction;790
92.2;2 Test Set Up and System Parameters;791
92.3;3 Calculations;793
92.3.1;3.1 Useful Heat Gain by the Water;793
92.3.2;3.2 Calculation of Heat Losses from the Receiver;793
92.4;4 Uncertainty Analysis;794
92.5;5 Results and Discussion;795
92.5.1;5.1 Effect of Wind Velocity on Overall Heat Loss Coefficient and Collector Efficiency;795
92.5.2;5.2 Effect of Heat Loss on Collector Efficiency and Heat Gain;796
92.5.3;5.3 Effect of Receiver Temperature on Temperature Gradient and Collector Efficiency;797
92.5.4;5.4 Effect of Beam Solar Radiation and Wind Velocity on Collector Efficiency;798
92.5.5;5.5 Effect of Overall Heat Loss Coefficient and Receiver Temperature on Collector Efficiency;798
92.6;6 Conclusions;799
92.7;References;800
93;86 Application of MOORA Method for Friction Stir Welding Tool Material Selection;801
93.1;1 Introduction;802
93.2;2 FSW Tool Material Selection;805
93.2.1;2.1 FSW Tool Material Selection Criteria;805
93.2.2;2.2 Application of MOORA Method for FSW Tool Material Selection;807
93.3;3 Conclusions;809
93.4;Acknowledgements;809
93.5;References;809
94;87 Development of Prototype of Light Passenger Quarter Car for Improved Vehicle Ride Characteristics;811
94.1;1 Introduction;811
94.2;2 Development of Prototype of Quarter Car;813
94.2.1;2.1 2 DOF P-QCSS Model;814
94.2.2;2.2 2 DOF HA-QCSS Model;815
94.3;3 Simulation Analysis;816
94.3.1;3.1 Development of Program in SIMULINK for 2 DOF P-QCSS Model;816
94.3.2;3.2 Development of Program in SIMULINK 2 DOF HA-QCSS Model;818
94.4;4 Experimental Analysis;819
94.4.1;4.1 Experimental Results of 2 DOF P-QCSS and HA-QCSS;819
94.4.2;4.2 Simulation Results of 2 DOF P-QCSS and HA-QCSS;821
94.5;5 Conclusion;822
94.6;References;822
95;88 Sheet Metal Piercing Punch Material Selection Using Complex Proportional Assessment Method;824
95.1;1 Introduction;824
95.2;2 Multi-criteria Decision-Making Method;825
95.2.1;2.1 Complex Proportional Assessment Method;825
95.3;3 Illustrative Example;828
95.3.1;3.1 COPRAS Method;829
95.4;4 Conclusion;831
95.5;References;831
96;89 Investigation of Thermal Performance of FRP Parabolic Trough Collector Using Different Receivers;833
96.1;1 Introduction;833
96.2;2 Theory of Basic Thermal Performance;835
96.2.1;2.1 Overall Loss Coefficient and Heat Correlations;836
96.2.2;2.2 Heat Transfer Coefficient Between the Absorber Tube and the Cover;837
96.2.3;2.3 Heat Transfer Coefficient on the Inside Surface of the Absorber Tube;837
96.3;3 System Description;837
96.4;4 Experimental Procedure;839
96.5;5 Results and Discussions;839
96.6;6 Conclusions;842
96.7;Acknowledgements;843
96.8;References;843
97;90 Investigation of Load Carrying Capacity for Steering System with Polymer Helical Rack and Pinion Gear;844
97.1;1 Introduction;844
97.2;2 Design of Steering Rack and Pinion Gear Box;845
97.2.1;2.1 Loading Condition for Steering Gear Box;845
97.2.2;2.2 Selection of Suitable Gear Module;845
97.2.3;2.3 Design of Helical Rack and Pinion Gear Pair by AGMA Approach;846
97.3;3 Finite Element Analysis of Steering Gear Box;848
97.3.1;3.1 Finite Element Analysis of Nylon 6/6 Gear Pair;848
97.3.2;3.2 Finite Element Analysis of Delrin Gear Pair;848
97.4;4 Experimental Stress Analysis of Steering Gear Box;851
97.4.1;4.1 Experimental Strain Analysis Test Observations and Results;851
97.5;5 Result and Discussion;852
97.5.1;5.1 Design, FEA and ESA Comparative Results of Gear Pair;852
97.5.2;5.2 Weight and Cost Analysis of Gear Pair;854
97.5.3;5.3 LifeSpan of Gear;854
97.5.4;5.4 Societal Application of Gear Pair;854
97.6;6 Conclusion;855
97.7;References;855
98;91 Dry Sliding Wear Performance Optimization of MoS2 Filled PTFE Composites Using Taguchi Approach;856
98.1;1 Introduction;856
98.2;2 Wear Testing;857
98.3;3 Experimental Design;858
98.4;4 Results and Discussion;859
98.4.1;4.1 Statistical Analysis of Wear Rate;859
98.4.2;4.2 Confirmation Experiment;863
98.5;5 SEM and EDX Results;864
98.6;6 Conclusions;865
98.7;References;866
99;92 Tribological Behavior of Al6061 Alloy Reinforced with Fly Ash Particles;867
99.1;1 Introduction;867
99.2;2 Methodology;868
99.3;3 Results and Discussions;868
99.3.1;3.1 Wear Test;868
99.3.2;3.2 Microstructure;872
99.4;4 Conclusion;874
99.5;References;875
100;93 A Study on Partial Automation of Lac Bangle Manufacturing in Pandharpur;876
100.1;1 Introduction;876
100.2;2 Literature Survey;877
100.2.1;2.1 History of Lac Bangles;877
100.2.2;2.2 Traditional Procedure of Bangle Making;877
100.2.3;2.3 Drawbacks of the Traditional Process;879
100.2.4;2.4 Lac Bangles Manufacturing Survey in Pandharpur;879
100.2.5;2.5 Swot Analysis;880
100.3;3 Automation in the Lac Bangle Manufacturing Process;881
100.3.1;3.1 Automation Is a Key for Survival of Lac Bangle Manufacturers;881
100.3.2;3.2 Lac Bangle Manufacturing Through Partial Automation;881
100.3.3;3.3 Scope for Automation in Lac Bangle Manufacturing;881
100.4;4 Suggestions Based on the Study;882
100.5;References;883
101;94 Parametric Optimization for Photochemical Machining of Copper Using Grey Relational Method;884
101.1;1 Introduction;884
101.2;2 Materials and Methods;885
101.2.1;2.1 Material;885
101.2.2;2.2 Experimental Procedure;885
101.2.3;2.3 Selection of Parameters;886
101.2.4;2.4 Taguchi Design of Experiments;887
101.2.5;2.5 Photo Tool Analysis;887
101.2.6;2.6 Experimentation;887
101.3;3 Results and Discussion;889
101.3.1;3.1 Effect of Process Parameters on Edge Deviation (ED);890
101.3.2;3.2 Effect of Process Parameters on Material Removal Rate (MRR);890
101.3.3;3.3 Optimization Using Grey Relational Analysis;891
101.3.4;3.4 Use of the Study for Societal Application;893
101.4;4 Conclusions;893
101.5;References;894
102;Infrastructure Developments for Societal Applications;895
103;95 Buried Pipelines Deformation Behavior in Different Soils Using Geofoam;896
103.1;1 Introduction;896
103.2;2 Motivation Behind Present Study;897
103.3;3 Model Materials;897
103.3.1;3.1 Soil;897
103.3.2;3.2 Geofoam;899
103.3.3;3.3 HDPE Pipe;899
103.4;4 Model Test Package and Test Procedure;900
103.5;5 Test Program;901
103.6;6 Analysis and Interpretation;902
103.7;7 Results and Discussion;903
103.8;8 Conclusions;903
103.9;References;904
104;96 A Time Dependent Scour Around Circular Piers Under Unsteady Flow;905
104.1;1 Introduction;905
104.2;2 Experimental Set up and Procedure;907
104.3;3 Modification in Existing Flume;908
104.4;4 Result and Discussion;909
104.5;5 Conclusion;916
104.6;References;916
105;97 Implementation of Methodology for Wastewater Treatment from Textile Industry;917
105.1;1 Introduction;917
105.2;2 Intended Beneficiaries;918
105.3;3 Methods;918
105.4;4 Physicochemical Waste Water Treatment;919
105.5;5 Hardware Project;920
105.6;6 Chemical Components;921
105.7;7 Results;922
105.8;8 Conclusion;923
105.9;References;923
106;98 Improving Torsional Seismic Response of Plan Asymmetric Structures Using Energy Dissipating Devices;924
106.1;1 Introduction;924
106.1.1;1.1 Background to the Study;924
106.1.2;1.2 Structural Irregularity in Buildings;925
106.1.3;1.3 Basic Principles of Seismic Response Control;925
106.1.4;1.4 Seismic Response Reduction by Visco-elastic Devices;926
106.2;2 Seismic Analysis Considerations;927
106.2.1;2.1 Torsion in Plan Asymmetric Buildings;927
106.2.2;2.2 Mathematical Modeling of Visco-elastic Device Response;928
106.2.2.1;2.2.1 Maxwell Spring-Dashpot Model;928
106.2.2.2;2.2.2 Kelvin–Voight Model;928
106.3;3 Methodology of Present Study;929
106.3.1;3.1 Strong Motions;929
106.3.2;3.2 Visco-elastic Device Design;929
106.3.3;3.3 Plan Asymmetric Buildings;929
106.3.4;3.4 Performance Requirement;931
106.3.5;3.5 Device Optimum Placement Strategy;931
106.3.6;3.6 Performance Evaluation and Optimized Selection;931
106.4;4 Results and Discussion;932
106.4.1;4.1 Results for L Shape Building;933
106.5;5 Conclusions;934
106.6;References;934
107;99 Optimization of Cables in Cable Stayed Bridge;935
107.1;1 Introduction;935
107.2;2 Optimization Methods of Cable Stayed Bridge;936
107.3;3 The Analysis Programme;937
107.4;4 Description of Bridge;937
107.4.1;4.1 Location of Project Site, Geometry and Cross Section of Bankot Bridge;937
107.4.2;4.2 Properties Considered for Elements in Model;939
107.4.3;4.3 Midas Model and Methodology of Analysis;942
107.5;5 Optimisation Technique Implemented in MIDAS;943
107.6;6 Results;943
107.7;7 Conclusion;946
107.8;References;946
108;100 Vibration Isolation of Single-Degree-Freedom System Using Permanent Magnets;947
108.1;1 Introduction;947
108.2;2 Methodology;948
108.2.1;2.1 Problem Statement;948
108.2.2;2.2 Procedure;949
108.3;3 Results and Discussions;950
108.3.1;3.1 Results;950
108.4;4 Conclusion;954
108.5;5 Future Scope;954
108.6;References;955
109;101 Study on Behavior of Externally Bonded RC Beams Using Armid Fiber Sheets;956
109.1;1 Introduction;956
109.2;2 Experimental Investigation;957
109.2.1;2.1 Details of the Beam Specimen;957
109.2.2;2.2 Preparation of Test Specimen;957
109.2.3;2.3 Test Setup;959
109.2.4;2.4 Test Result;960
109.2.5;2.5 Ultimate Load Carrying Capacity;960
109.3;3 Finite Element Modeling;961
109.3.1;3.1 Ultimate Load Carrying Capacity;962
109.4;4 Conclusions;964
109.5;References;964
109.6;Journal Papers;964
109.7;Books;965
109.8; ACI/IS Codes;965
110;ICT Based Societal Technologies;966
111;102 Forecasting Monsoon Rainfall Over India Based on Global Climate Parameters;967
111.1;1 Introduction;967
111.2;2 Data;970
111.3;3 Methodology;970
111.3.1;3.1 Seasonal ISMR Prediction;971
111.4;4 Discussion;974
111.5;5 Conclusions;975
111.6;References;975
112;103 Augmented Reality in Higher Education Supported with Web 2.0: A Case Study in Chemistry Course;977
112.1;1 Introduct?on;977
112.2;2 Literature Review;978
112.3;3 Research Methodology;979
112.3.1;3.1 Prototype Architecture;979
112.3.2;3.2 Experimental Setup;979
112.3.2.1;3.2.1 Measurement Instruments;981
112.4;4 Data Analysis and Findings;982
112.4.1;4.1 Overall Cognitive Performance;982
112.5;5 Conclusion;984
112.6;Acknowledgements;985
112.7;References;985
113;104 Implementation of QoS Based Policer in Routers for Next Generation Network (NGN);986
113.1;1 Introduction;986
113.2;2 Related Work;987
113.2.1;2.1 Literature Survey;987
113.2.2;2.2 QoS Mapping;988
113.3;3 Modeling Traffic on QoS Based Router for NGN;991
113.4;4 Simulation Results and Analysis;992
113.5;5 Conclusion;993
113.6;References;993
114;105 Wireless Sensor Networks for Societal Applications;995
114.1;1 Introduction;995
114.2;2 Applications of Sensor Networks;996
114.2.1;2.1 Environmental Applications;997
114.2.2;2.2 Military Applications;997
114.2.3;2.3 Home Applications;998
114.2.4;2.4 Health Applications;999
114.2.5;2.5 Other Commercial Applications;999
114.3;3 Motivating Parameters of WSN Design;1000
114.3.1;3.1 Fault Tolerance;1000
114.3.2;3.2 Flexibility;1001
114.3.3;3.3 Hardware Cost of SN;1002
114.3.4;3.4 Hardware Bounds;1002
114.3.5;3.5 WSN Technology;1003
114.3.6;3.6 Nature;1004
114.3.7;3.7 Transmission Channel for WSN;1005
114.3.8;3.8 Power Intake for WSN;1006
114.4;4 Architecture of SN;1007
114.5;5 Conclusion;1009
114.6;References;1010
115;106 Topology-Hiding Multipath Routing Protocol: A Modified Approach for Wireless Network;1013
115.1;1 Introduction;1013
115.2;2 Related Works;1014
115.3;3 Modified Topology-Hiding Multipath Routing Protocol (M-THMR);1015
115.4;4 Experimental Evaluations;1018
115.4.1;4.1 Simulation Setup;1018
115.4.2;4.2 Performance Analysis;1019
115.5;5 Conclusion;1021
115.6;References;1021
116;107 A Cloud Computing Based WSNs for Agriculture Management;1023
116.1;1 Introduction;1023
116.2;2 Proposed System;1024
116.2.1;2.1 WSN (Wireless Sensor Networks);1024
116.2.2;2.2 Ardunio;1025
116.2.3;2.3 Personal Computer;1025
116.2.4;2.4 Thingspeak;1026
116.2.5;2.5 Mobile/PC (Visualization);1026
116.3;3 System Flow Chart;1027
116.4;4 Results and Discussions;1028
116.5;5 Conclusion;1029
116.6;Acknowledgements;1029
116.7;References;1029
117;108 Analysis on an MHT Based Integrity Authentication Framework for Cloud Data Security;1030
117.1;1 Introduction;1030
117.2;2 Related Work;1031
117.3;3 Problem Statement Analysis;1031
117.4;4 System Design;1031
117.4.1;4.1 Data Owner;1032
117.4.2;4.2 Cloud Service Provider;1032
117.4.3;4.3 Merkle Hash Tree;1032
117.4.4;4.4 Trusted Third Party;1033
117.5;5 Implementation;1033
117.5.1;5.1 System Requirements;1033
117.5.2;5.2 Setup;1033
117.5.3;5.3 Encryption Phase;1033
117.5.4;5.4 Key Generation Phase;1034
117.5.5;5.5 Decryption Phase;1034
117.5.6;5.6 Data Update and Verification;1034
117.5.7;5.7 Public Auditing with All Replica;1034
117.6;6 Performance Analysis;1035
117.7;7 Conclusion;1036
117.8;References;1036
118;109 Historical Drought Analysis of Maharashtra State by Using SPI Index;1038
118.1;1 Introduction;1038
118.2;2 Objectives of Work;1039
118.3;3 Data;1039
118.4;4 Methodology;1040
118.5;5 Results and Discussions;1042
118.6;6 Conclusions;1045
118.7;References;1045
119;110 Statistical Downscaling of GCM Output for Generating Future Rainfall Scenarios Using SDSM for Upper Godavari Basin, Maharashtra;1046
119.1;1 Introduction;1046
119.2;2 Downscaling;1047
119.2.1;2.1 Statistical Downscaling Model (SDSM);1047
119.3;3 Study Area;1047
119.3.1;3.1 Data Used;1049
119.4;4 Methodology;1049
119.5;5 Results and Discussions;1049
119.5.1;5.1 Climate Change Scenarios (CCCma Under RCP2.6, RCP4.5, RCP8.5) by Downscaling Future Rainfall;1050
119.6;6 Conclusion;1052
119.7;References;1052
120;111 Design of MIMO Antenna for WLAN and Wi-Max Application;1053
120.1;1 Introduction;1053
120.2;2 Single Antenna Design;1054
120.2.1;2.1 Designing of UWB MSA Antenna;1054
120.2.2;2.2 Antenna Simulation Analysis;1055
120.3;3 MIMO Antenna Design and Analysis;1058
120.4;4 Comparison of Single Antenna and MIMO Antenna;1061
120.5;5 Conclusion;1061
120.6;References;1061
121;112 Secure Ration Dispensing System Using HAN and Geofencing Through Li-Fi;1062
121.1;1 Introduction;1062
121.2;2 Design and Implementation;1063
121.2.1;2.1 Human Area Networking (HAN);1063
121.2.2;2.2 Geofencing Through Li-Fi;1064
121.2.3;2.3 Implementation;1065
121.3;3 Working;1067
121.4;4 Benefits;1068
121.5;5 Limitations;1068
121.6;6 Results;1069
121.7;7 Conclusion;1069
121.8;8 Future Scope;1069
121.9;References;1070
122;113 Enhanced Digital Image Watermarking in Combination with Encryption;1071
122.1;1 Introduction;1071
122.1.1;1.1 Proposed Method;1072
122.1.2;1.2 Proposed Methodology;1073
122.2;2 Experiments and Results;1074
122.3;3 Conclusion;1078
122.4;References;1078
123;114 SNR Versus BER Performance and Effect of Changes in Hysteresis on Different Modes of IEEE 802.11a;1079
123.1;1 Introduction;1079
123.2;2 OFDM Principles;1080
123.3;3 Effect of Changes in Hysteresis on Different Modes;1081
123.4;4 Different Fading Modes;1082
123.4.1;4.1 Dispersive Fading Mode;1082
123.4.2;4.2 Flat Fading;1082
123.4.3;4.3 No Fading Mode;1083
123.5;5 Simulation Environment;1083
123.6;6 Conclusions;1087
123.7;Acknowledgements;1087
123.8;References;1087


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.