Proceedings of the International Conference on Advanced Technologies for Societal Applications
E-Book, Englisch, 1088 Seiten, eBook
ISBN: 978-3-319-53556-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;7
3;Deployable Societal Technologies;18
4;1 Application of Nuclear Spin-Offs for Societal Development;19
4.1;1 AKRUTI Programme [1, 2];20
4.2;2 Demonstration of AKRUTI;21
4.3;3 Observations;21
4.4;4 Rural Techno-entrepreneurship [3];22
4.5;5 Consultancy;23
4.6;6 DAE Out Reach Centre (DAE ORC) [4, 2];23
4.7;7 XII Plan Project—DTDDF [4];24
4.8;8 Corporate Social Responsibility (CSR) Model;24
4.9;9 Conclusion—CILLAGE;25
4.10;References;25
5;2 Role of BARC Technologies in Agriculture for Benefit of Farming Community in India;26
5.1;1 Technologies for Mutant Seeds;26
5.2;2 Technologies for Soil Health;27
5.3;3 Technologies for Pest Control;28
5.4;4 Food Preservation Technology;29
5.5;5 Conclusion;29
5.6;References;29
6;3 Use of Photochemical Machining Technology for Producing Metal Artwork;31
6.1;1 Introduction;31
6.2;2 Procedure;32
6.2.1;2.1 Using Electricity—Traditional Photochemical Machining Process;32
6.2.2;2.2 Without Electricity—Screen Printing Method;33
6.3;3 Development of PCM Process for Artisans;34
6.3.1;3.1 Photo Tool Development for Artisans;34
6.3.2;3.2 Selection of Metal;36
6.3.3;3.3 Workshops for Artisans;36
6.4;4 Commercial Product Development;37
6.4.1;4.1 Exhibition in Kartiki Vari at Pandharpur;37
6.4.2;4.2 Commercial Products;38
6.4.3;4.3 Generation Entrepreneurs for PCM Based Artwork;38
6.5;5 Conclusions;39
6.6;References;39
7;4 RuTAG IIT Bombay Floating Fish Cages for Livelihood Opportunities for Tribals in Dimbhe Area;41
7.1;1 Introduction;41
7.1.1;1.1 Objective;41
7.1.2;1.2 About Shashwat;42
7.2;2 Need for the Intervention;42
7.2.1;2.1 Dimbhe Dam and the Struggle of the Local Communities;42
7.2.2;2.2 Introducing Aquaculture in Dimbhe Dam;42
7.2.3;2.3 Challenges Faced by the Tribals;43
7.3;3 The RuTAG IIT Bombay Intervention;43
7.3.1;3.1 Literature Review;43
7.3.2;3.2 RuTAG IIT Bombay Fish Cage Structure;44
7.4;4 Impact Analysis;45
7.4.1;4.1 Livelihood;46
7.4.2;4.2 Women Empowerment;47
7.4.3;4.3 Rewards and Recognitions;47
7.5;5 Conclusion;48
7.6;6 Scope for Future Dissemination;48
7.7;7 Recommendations for Future Research;49
7.8;Acknowledgements;49
7.9;References;49
8;5 Evaluation of Multiple Hydrometerological Factors for Prioritization of Water Stress Areas in the Upper Yerala River Basin, Satara, Maharashtra, India;50
8.1;1 Introduction;50
8.2;2 Study Area;51
8.3;3 Methodology;53
8.4;4 Results and Discussions;54
8.4.1;4.1 Groundwater Recharge;54
8.4.2;4.2 Groundwater Draft;54
8.4.3;4.3 Population;56
8.4.4;4.4 Abstraction Structures;58
8.4.5;4.5 Groundwater Level;59
8.4.6;4.6 Rainfall;59
8.5;5 Conclusions;62
8.6;References;63
9;6 Design of Improved Biomass Cook Stove for Domestic Utility;65
9.1;1 Introduction;65
9.2;2 Experimental Studies on Improved Cook Stove;67
9.3;3 Results and Discussions;69
9.3.1;3.1 Results of IBCS Testing;69
9.3.1.1;3.1.1 Roti Making Test;73
9.3.2;3.2 Heat Transfer Analysis;73
9.4;4 Conclusions;74
9.5;References;74
10;7 Computational and Experimental Investigations on Small Horizontal Axis Wind Turbine for Household Applications;76
10.1;1 Introduction;76
10.2;2 Airfoil and Wind Turbine Basics;77
10.3;3 Computational Studies on Small Scale HAWT;78
10.4;4 Experimental Studies on Small Scale HAWT;80
10.5;5 Results and Discussions;81
10.6;6 Conclusions;84
10.7;References;84
11;8 Computational and Experimental Studies on Effect of Artificial Roughness on Performance of Solar Air Heater;85
11.1;1 Introduction;85
11.2;2 Methodology;86
11.3;3 Results and Discussions;89
11.4;4 Conclusions;94
11.5;References;94
12;9 Design and Development of Novel Mini Wind Power Turbine Set;95
12.1;1 Introduction;95
12.2;2 Design of Turbine;96
12.3;3 Fabrication of Turbine;96
12.4;4 Testing of Mini Wind Turbine;98
12.5;5 Conclusion;100
12.6;References;101
13;10 Treadle Pump Operation with Rotary Motion;102
13.1;1 Introduction;102
13.2;References;109
14;11 Biofuels—Sustainable Alternative to Petroleum (Fossil Fuels) and New Revenue for Farmers;110
14.1;1 Introduction;110
14.2;2 Present Scenario in India;111
14.3;3 Biofuel;111
14.3.1;3.1 Types of Biofuels;111
14.3.1.1;3.1.1 Ethanol;111
14.3.1.2;3.1.2 Biodiesel;112
14.4;4 Properties of Biofuel;112
14.4.1;4.1 Properties of Ethanol Oil Compared to the Petrol;112
14.4.2;4.2 Properties of Biodiesel Compared to Diesel Oil;112
14.5;5 Feedstock to Produce Biofuels;113
14.5.1;5.1 Ethanol;113
14.5.2;5.2 Biodiesel;113
14.6;6 Biofuel Production;113
14.6.1;6.1 Ethanol;114
14.6.2;6.2 Biodiesel;114
14.7;7 Sustainability of Biofuels with Respect to Petroleum Fuels;114
14.7.1;7.1 Effect on Engine Parameters and Emissions;114
14.7.1.1;7.1.1 Effect on Exhaust Emissions;114
14.7.1.2;7.1.2 Engine Performance;115
14.7.1.3;7.1.3 Durability of Engine;115
14.7.2;7.2 Environmental Considerations;115
14.7.3;7.3 Benefits to the Country;116
14.8;8 Biofuels as a New Revenue for the Farmer;116
14.9;9 Conclusion;117
14.10;References;117
15;12 Microcontroller Based Automatic Drip Irrigation System;118
15.1;1 Introduction;118
15.1.1;1.1 Components;119
15.2;2 Irrigation;119
15.2.1;2.1 Types of Irrigation;120
15.3;3 Methodology;120
15.4;4 System Architecture;121
15.5;5 Results and Discussions;122
15.6;6 Conclusion;124
15.7;References;124
16;13 Sustainable Raft Based Hydroponic System for Growing Spinach and Coriander;125
16.1;1 Introduction;125
16.2;2 Materials and Procedures;126
16.2.1;2.1 Seedlings and Cups;126
16.3;3 Results and Discussion;129
16.4;4 Conclusion;132
16.5;References;133
17;14 Effect of Change in Vacuum Pressure on the Performance of Solar Dryers;134
17.1;1 Introduction;134
17.2;2 Drying Process on Psychrometric Chart;135
17.3;3 Experimental Investigation;136
17.4;4 Results and Discussion;136
17.4.1;4.1 Drying Time Versus Weight of Grapes;136
17.4.2;4.2 Drying Time Versus Drying Rate;137
17.4.3;4.3 Drying Time Versus Moisture Content;138
17.4.4;4.4 Drying Time Versus Moisture Loss;138
17.5;5 Conclusions;139
17.6;References;139
18;15 Wireless Healthcare Monitoring System;141
18.1;1 Introduction;141
18.2;2 Literature Review;142
18.3;3 System Architecture;143
18.3.1;3.1 Node Architecture;144
18.3.2;3.2 System Flow Chart;144
18.3.3;3.3 Step of Flow Graph;144
18.4;4 Experimental Evaluation;145
18.4.1;4.1 Heartbeat and Stress Sensor;146
18.4.2;4.2 Temperature Sensor;147
18.4.3;4.3 Accelerometer Sensor;147
18.4.4;4.4 GUI and Alert Message;147
18.5;5 Conclusion;150
18.6;References;150
19;16 Optimization of Process Parameters for Shutter Type Vertical Axis Wind Turbine;152
19.1;1 Introduction;152
19.2;2 Methodology;153
19.2.1;2.1 Experimentation Model of STVAWT;153
19.2.2;2.2 Design of Experiments;154
19.3;3 Results and Discussion;155
19.4;4 Conclusion;156
19.5;References;157
20;17 An Anthropometric Data of Cycle Rickshaw Operators to Approach Ergonomics in Cycle Rickshaw Design;158
20.1;1 Introduction;158
20.1.1;1.1 Cycle Rickshaw;158
20.1.2;1.2 Cycle Rickshaw Operators;159
20.2;2 Research Methodology for Pilot Study;159
20.2.1;2.1 Motivation and Research Objective;159
20.2.2;2.2 Research Instrument;160
20.2.3;2.3 Survey Administration;160
20.2.4;2.4 Respondents’ Profiles;160
20.2.5;2.5 Variables;160
20.2.6;2.6 Hypotheses;161
20.3;3 Results and Discussion;161
20.3.1;3.1 Anthropometric Data;161
20.3.2;3.2 Anthropology of Indian Cycle Rickshaw Operator;163
20.3.3;3.3 Hypothesis Testing;163
20.4;4 Variable Factors Consider for Ergonomic Design of Cycle Rickshaw Puller;167
20.4.1;4.1 Crank Length;167
20.4.2;4.2 Seat Tube Angle;168
20.4.3;4.3 Speed Ratio;168
20.4.4;4.4 Wheel Diameter;169
20.4.5;4.5 Load;169
20.4.6;4.6 Kinematics of Pedaling;169
20.5;5 Result Analysis;170
20.6;6 Conclusion;171
20.7;Acknowledgements;171
20.8;References;171
21;18 Analysis of Thermal Performance of Serpentine Tube in Tube Heat Exchanger;173
21.1;1 Introduction;174
21.2;2 Experimental Setup;175
21.3;3 Mathematical Analysis;176
21.3.1;3.1 Analytical Calculations;176
21.3.2;3.2 Numerical Calculations;177
21.4;4 Boundary Conditions;179
21.5;5 Result and Discussions;180
21.6;6 Conclusions;185
21.7;References;186
22;19 Experimental Performance Evaluation on S.I. Engine with Gasoline and Liquefied Petroleum Gas as Fuel;187
22.1;1 Introduction;187
22.2;2 Experimental Detail;188
22.2.1;2.1 Selection of Fuel;188
22.2.2;2.2 Experimental Setup;188
22.2.2.1;2.2.1 S.I. Engine;188
22.2.2.2;2.2.2 Fuel Intake System;188
22.2.2.3;2.2.3 Braking System;189
22.2.2.4;2.2.4 Coupling of Engine with Dynamometer and Speed Measurement;190
22.3;3 Experiment Test Parameter;191
22.3.1;3.1 Torque;191
22.3.2;3.2 Break Power;191
22.3.3;3.3 Exhaust Emissions;192
22.4;4 Results and Discussions;192
22.4.1;4.1 Exhaust Emissions;192
22.4.2;4.2 Break Power and Torque;193
22.4.3;4.3 Speed and Torque;194
22.5;5 Conclusion;195
22.6;References;195
23;20 A Review on the Green Supply Chain Management (GSCM) Practices, Implementation and Study of Different Framework to Get the Area of Research in GSCM;196
23.1;1 Introduction;196
23.2;2 Literature Review on GSCM;197
23.2.1;2.1 Concept of GSCM;197
23.2.2;2.2 Principal and Practices of GSCM;198
23.2.3;2.3 Implementation and Frame Works;199
23.2.4;2.4 Evaluation and Performance of GSCM;200
23.3;3 Discussion and Conclusion;201
23.4;References;201
24;21 Design and Performance Evaluation of Low-Cost, Innovative, Efficient Small-Scale Wind Power Generation for Rural Community of India;203
24.1;1 Introduction;204
24.2;2 Design of HAWT System;205
24.2.1;2.1 Design of Blade;207
24.2.2;2.2 Selection of Aerofoil Section;208
24.3;3 Construction of HAWT;208
24.4;4 General Characteristics of 500 W Small Wind Turbine;210
24.5;5 Testing of HAWT;211
24.6;6 Performance Evaluation of Horizontal Axis Wind Machine;212
24.7;7 Performance Comparison;213
24.8;8 Conclusions;214
24.9;References;215
25;22 Design Modification of Biogas Digester to Avoid Scum Formation at the Surface;216
25.1;1 Introduction;216
25.2;2 Background Information;217
25.2.1;2.1 Biogas Characteristics;217
25.2.2;2.2 Failure Causes of Biogas Plant;218
25.2.3;2.3 Rheological Properties;218
25.3;3 Numerical Methods;219
25.3.1;3.1 Mixing;219
25.3.2;3.2 Governing Equations;220
25.4;4 Proposed Digester Design for Surface Velocity Improvement;223
25.4.1;4.1 Problem Statement;223
25.5;5 Result and Discussion;224
25.5.1;5.1 Based on Surface Velocity Maximization;225
25.6;6 Conclusion;227
25.7;References;228
26;Sensor, Image and Data Driven Societal Technologies;229
27;23 Social Influence as a Parameter to Prioritize Social Problems;230
27.1;1 Introduction;230
27.2;2 Background;231
27.3;3 Proposed Algorithm;231
27.4;4 Experimental Analysis;235
27.5;5 Conclusion;236
27.6;References;237
28;24 An Accident Detection System (ADS) for the Mumbai-Pune Expressway Using Vehicular Communication;238
28.1;1 Introduction;238
28.2;2 The Proposed ADS System;239
28.3;3 Framework Design for the ADS;241
28.3.1;3.1 Initial Handshaking;241
28.3.1.1;3.1.1 Vehicle Vi Meets the First RSU R(Id);241
28.3.1.2;3.1.2 Verification of the Vehicle by the CCU;242
28.3.1.3;3.1.3 Shared Key Generation;242
28.3.2;3.2 Vehicle Message Dissemination;242
28.3.3;3.3 Vehicle Accident Data Processing;243
28.3.3.1;3.3.1 Speed Aggregation and Message Format;243
28.3.4;3.4 Central Control Unit;244
28.4;4 Conclusion;245
28.5;References;246
29;25 Data Mining Algorithms for Improving the Efficiency of Governance in Dynamic Social Systems: Case Study of Indian Caste and Tribe Reservations;247
29.1;1 Introduction;247
29.2;2 Conceptualization and Methodology;249
29.3;3 Data Analysis;249
29.4;4 Results and Interpretation;252
29.4.1;4.1 One-Class SVM Results;252
29.4.2;4.2 ONB Results;253
29.4.3;4.3 k-NN Results;254
29.4.4;4.4 PCA Results;255
29.4.5;4.5 Comparative Results;257
29.5;5 Conclusion and Reflection;258
29.6;Appendix;258
29.7;References;260
30;26 An Approach for PCA and GLCM Based MRI Image Classification;262
30.1;1 Introduction;262
30.2;2 Proposed Method;263
30.3;3 Proposed Methodology;263
30.3.1;3.1 Feature Extraction Using PCA;264
30.3.2;3.2 Feature Extraction Using GLCM;265
30.3.3;3.3 Classification;267
30.3.4;3.4 Segmentation;268
30.4;4 Morphological Operators;268
30.5;5 Results;268
30.6;6 Conclusion;271
30.7;References;271
31;27 Urban Tree Canopy Detection Using Object-Based Image Analysis Approach for High-Resolution Satellite Imagery;272
31.1;1 Introduction;272
31.2;2 Study Area;273
31.3;3 Methodology;273
31.4;4 Results and Discussion;275
31.5;5 Conclusion;277
31.6;References;278
32;28 Delamination Study of Sandwich Beam Coupled with Piezoelectric Actuator Using Cohesive Surface Behavior;279
32.1;1 Introduction;279
32.2;2 Material and Dimensions;281
32.3;3 Methodology;283
32.4;4 Results and Discussions;284
32.5;5 Conclusions;287
32.6;References;287
33;29 Development of Methodology for Transforming CT Images Indicating Location and Size of Lung Cancer Nodule;288
33.1;1 Introduction;288
33.2;2 Objectives of Study;289
33.3;3 Dataset;290
33.4;4 Proposed Method;290
33.5;5 Experimental Results;293
33.6;6 Conclusion;296
33.7;References;296
34;30 A Driver Assistance System Using ARM Processor for Lane and Obstacle Detection;297
34.1;1 Introduction;297
34.1.1;1.1 Lane Detection;298
34.1.2;1.2 Obstacle Detection;298
34.2;2 Proposed System Model;299
34.2.1;2.1 Ultrasonic Sensor;300
34.2.2;2.2 Front Side Camera;300
34.2.3;2.3 Backside Camera;300
34.2.4;2.4 Safety Indicators;301
34.2.5;2.5 Display;301
34.2.6;2.6 DC Motors;301
34.3;3 Implementation;301
34.3.1;3.1 Connection Diagram;302
34.3.2;3.2 Flowchart;302
34.4;4 Experimental Results;303
34.5;5 Conclusion and Result Analysis;306
34.6;References;307
35;31 Multimodel PID and RST Controller to Control CSTR Process Using Gain Scheduling Technique;308
35.1;1 Introduction;308
35.2;2 Modeling of CSTR Process;309
35.3;3 Multiple Model PID Control Design;310
35.4;4 Multiple Model Self-tuning Regulator (RST) Design;312
35.4.1;4.1 Recursive Least Square Algorithm;312
35.4.2;4.2 Self-tuning Pole-Placement Control;313
35.5;5 Simulation Results and Discussions;314
35.6;6 Conclusion;318
35.7;References;319
36;32 Silkworm Eggs Counting System Using Image Processing Algorithm;320
36.1;1 Introduction;320
36.2;2 Proposed Method;322
36.2.1;2.1 Image Acquisition;323
36.2.2;2.2 Color Conversion;323
36.2.3;2.3 Two Stage Segmentation;324
36.2.4;2.4 Area Based Thresholding;326
36.2.5;2.5 Object Counting;326
36.3;3 Result and Discussion;327
36.4;4 Conclusion;327
36.5;Acknowledgements;327
36.6;References;328
37;33 Compression of Medical Images Using Lifting Scheme Based Bi-orthogonal CDF Wavelet Coupled with Modified Set Partitioning in Hierarchical Trees (SPIHT) Algorithm;329
37.1;1 Introduction;329
37.2;2 Lifting Scheme;329
37.2.1;2.1 Splitting;330
37.2.2;2.2 Lifting;330
37.2.3;2.3 Scaling;330
37.3;3 Bi-orthogonal Wavelets CDF 9/7;331
37.4;4 MSPIHT;332
37.5;5 Compression Quality Evaluation;333
37.6;6 Results;333
37.7;References;335
38;34 Various Traditional and Nature Inspired Approaches Used in Image Preprocessing;336
38.1;1 Introduction;336
38.2;2 Pre-processing;337
38.2.1;2.1 Layout Analysis/Zoning;337
38.2.2;2.2 Line Removal;337
38.2.3;2.3 Enhancing the Document (Cleaning and Smoothing);337
38.2.4;2.4 Thresholding/Binarization;338
38.2.5;2.5 Deskewing;338
38.2.6;2.6 Despeckle;338
38.2.7;2.7 Normalization;339
38.2.8;2.8 Character Segmentation;339
38.2.8.1;2.8.1 Edge Detection;339
38.3;3 Character Recognition;340
38.3.1;3.1 Template/Matrix Matching;340
38.3.2;3.2 Feature Extraction;340
38.3.2.1;3.2.1 Moments;341
38.3.2.2;3.2.2 Histogram;341
38.3.2.3;3.2.3 Hough Transform;341
38.3.2.4;3.2.4 Fourier Descriptors;342
38.3.2.5;3.2.5 Orientation Features;342
38.3.2.6;3.2.6 Topological Features;342
38.4;4 Conclusion;342
38.5;References;343
39;35 FPGA Based Adaptive Filter for Removal of Electromyogram Noise from Electrocardiogram Signal;344
39.1;1 Introduction;344
39.2;2 Proposed System;345
39.2.1;2.1 MIT-BIH ECG Database;345
39.2.2;2.2 LMS Adaptive Algorithm;346
39.3;3 Implementation Techniques;347
39.4;4 Results and Discussion;349
39.5;5 Conclusion;352
39.6;References;352
40;36 Feature Extraction of Surface EMG Using Wavelet Transform for Identification of Motor Neuron Disorder;353
40.1;1 Introduction;353
40.2;2 Related Work;354
40.3;3 Methodologies;355
40.4;4 Results and Discussions;356
40.5;5 Conclusion;360
40.6;Acknowledgements;362
40.7;References;363
41;37 Early Diagnosis of Diabetes by Retinopathy;364
41.1;1 Introduction;364
41.2;2 Related Work;365
41.3;3 Proposed Methodology;366
41.3.1;3.1 Explanation;367
41.4;4 Implementation and Results;370
41.4.1;4.1 Results;375
41.5;5 Conclusion;376
41.6;Acknowledgements;376
41.7;References;376
42;38 Optimal Location of TCSC Using Evolutionary Optimization Techniques;378
42.1;1 Introduction;378
42.2;2 Modeling of TCSC;379
42.3;3 Objective Function;380
42.3.1;3.1 Minimize the Active Power Loss;380
42.3.2;3.2 Maintain Voltage Profile;381
42.3.3;3.3 Minimize the Installation Costs;381
42.4;4 Implementation of TLBO for the Optimal Placement of TCSC;381
42.5;5 Test Results and Discussion;384
42.6;6 Conclusion;385
42.7;References;386
43;39 MATLAB Simulation Analysis for Removing Artifacts from EEG Signals Using Adaptive Algorithms;387
43.1;1 Introduction;387
43.2;2 Database;387
43.3;3 Adaptive Filter Algorithms;388
43.3.1;3.1 Least Mean Square Algorithm;388
43.3.2;3.2 Normalized Least Mean Square Algorithm;388
43.4;4 Artifacts;388
43.4.1;4.1 Electro-oculogram (EOG);389
43.4.2;4.2 Electromyogram (EMG);389
43.4.3;4.3 Electrocardiogram (ECG);389
43.5;5 Simulation Diagram;389
43.6;6 Results;390
43.6.1;6.1 Simulation Result for EOG Artifact Removing Using LMS Filter;390
43.6.2;6.2 Simulation Result for EOG Artifact Removing Using NLMS Filter;391
43.6.3;6.3 Simulation Result for EMG Artifact Removing Using LMS Filter;391
43.6.4;6.4 Simulation Result for EMG Artifact Removing Using NLMS Filter;392
43.6.5;6.5 Simulation Result for ECG Artifact Removing Using LMS Filter;392
43.6.6;6.6 Simulation Result for ECG Artifact Removing Using NLMS Filter;393
43.7;7 Conclusion;394
43.8;References;395
44;Mechatronics, Micro-Nano Related for Bio and Societal Applications;396
45;40 Effective Sensing Mechanisms and Techniques for Detection of E. coli Bacteria in Potable Water;397
45.1;1 Introduction;397
45.2;2 Tests for Water Contamination: Conventional and Contemporary;398
45.3;3 E. coli Biosensors: Substrates, Parameters and Techniques;399
45.4;4 Techniques Employed for E. coli Detection in Water;400
45.5;5 Challenges;404
45.6;6 Conclusion;404
45.7;Acknowledgements;404
45.8;References;404
46;41 Smart Materials for Biosensing Applications;406
46.1;1 Introduction;406
46.1.1;1.1 Smart Material Based Biosensors;407
46.2;2 Properties and Biosensing Application of the Smart Materials;408
46.2.1;2.1 Biosensing Properties of Smart Nanomaterial;408
46.2.2;2.2 Biosensing Properties of pH Sensitive Polymers;409
46.2.3;2.3 Biosensing Properties of Piezoelectric Materials;409
46.3;3 Fabrication Technique of Smart Materials and Strategies for Biosensing Modulation;410
46.3.1;3.1 Synthesis of Nanomaterial: Application in Biosensor;410
46.3.2;3.2 pH Sensitive and Stimuli Responsive Polymers Synthesis;412
46.3.3;3.3 Piezoelectric Materials for Biosensor Fabrication;412
46.4;4 Operating Principle of Biosensors Using Smart Materials;413
46.5;5 Conclusion and Outlook;414
46.6;Acknowledgements;414
46.7;References;414
47;42 Comparative Study to Improve Antenna Parameters of Multilayer Microstrip Patch Antenna;417
47.1;1 Introduction;417
47.2;2 Design Steps of Microstrip Antenna;418
47.3;3 Simulation Tool;420
47.4;4 Design Shapes;420
47.4.1;4.1 Simulated Results of Different Shape Multilayer MSA;420
47.5;5 Simulated Results of Multilayer Different Shapes MSA;421
47.5.1;5.1 Return Loss;421
47.5.2;5.2 Bandwidth;422
47.5.3;5.3 VSWR;423
47.5.4;5.4 Directivity;424
47.5.5;5.5 Gain;425
47.5.6;5.6 Radiation Pattern;426
47.6;6 Conclusion and Result Analysis;428
47.7;Acknowledgements;429
47.8;References;429
48;43 Investigation of Mechanical Behavior of Industry Waste and Al2O3 Reinforced Aluminium Matrix Composites by Powder Metallurgy Technique;430
48.1;1 Introduction;430
48.1.1;1.1 Matrix Material;431
48.1.2;1.2 Reinforcement Material;431
48.2;2 Experimentation;431
48.2.1;2.1 Metal Powder;432
48.2.2;2.2 Blending of Metal Powder;432
48.2.3;2.3 Compacting;433
48.2.4;2.4 Sintering;434
48.3;3 Results and Discussion;435
48.3.1;3.1 Ultimate Tensile Strength (UTS);435
48.3.2;3.2 Impact Strength;436
48.4;4 Conclusions;437
48.5;References;438
49;44 Phase Sensitive Detector: Fabrication, Processing, and Applications;439
49.1;1 Introduction;439
49.2;2 Experimental Details;440
49.2.1;2.1 Design and Fabrication Process;440
49.2.2;2.2 Operating Mechanism of PSD;440
49.3;3 Results and Discussions;441
49.4;4 Conclusions;442
49.5;References;442
50;45 Microbial Synthesis of Silver Nanoparticles Using Aspergillus flavus and Their Characterization;444
50.1;1 Introduction;444
50.2;2 Materials and Methods;445
50.2.1;2.1 Preparation of Cell Filtrate and Synthesis of Silver Nanoparticles;445
50.2.2;2.2 UV-Visible Characterization;445
50.2.3;2.3 XRD Measurements;445
50.2.4;2.4 FTIR Measurements;446
50.2.5;2.5 Scanning Electron Microscopy;446
50.2.6;2.6 TEM Measurements;446
50.3;3 Result and Discussion;446
50.3.1;3.1 Biosynthesis of Silver Nanoparticles;446
50.3.2;3.2 UV-Visible Spectra;447
50.3.3;3.3 XRD Analysis;447
50.3.4;3.4 SEM;448
50.3.5;3.5 FTIR Measurements;449
50.3.6;3.6 TEM;449
50.4;4 Conclusions;450
50.5;References;450
51;46 Shape Optimization of Microfluidic Pump Using Fluid-Structure Interaction Approach;452
51.1;1 Introduction;452
51.2;2 Numerical Modeling;453
51.2.1;2.1 Description of Micropump;453
51.2.2;2.2 Governing Equations;453
51.2.3;2.3 Boundary Conditions;454
51.3;3 Simulation Results and Parametric Study;454
51.3.1;3.1 Optimization of Divergence Angle and Diffuser Length;454
51.3.2;3.2 Optimization of Neck Width and Chamber Height;456
51.3.3;3.3 Optimization of Chamber Diameter and Diaphragm Thickness;457
51.4;4 Conclusion;457
51.5;References;458
52;47 Fabrication and Characterizations of Cu/CdS0.8Te0.2 Thin Film Schottky Junction Grown by Thermal Evaporation Technique;459
52.1;1 Introduction;459
52.2;2 Experimental;459
52.2.1;2.1 Preparation of Samples;460
52.3;3 Results and Discussion;460
52.3.1;3.1 XRD Analysis;460
52.3.2;3.2 SEM Analysis;461
52.3.3;3.3 Photo Sensing Analysis;462
52.3.4;3.4 I-V Characteristics of Schottky Diode;463
52.4;4 Conclusions;464
52.5;References;464
53;48 Kinetic and Thermodynamic Study of Mixed Crystals of Cadmium-Calcium Levo-Tartrate Dihydrate Grown in Silica Gel;466
53.1;1 Introduction;466
53.2;2 Experimental;466
53.3;3 Result and Discussion;467
53.3.1;3.1 Powder X-ray Diffraction;467
53.3.2;3.2 Thermal Analysis of CCT Crystal (TGA);468
53.3.3;3.3 Kinetic Parameter of Dehydration and Decomposition;470
53.3.4;3.4 Thermodynamic Parameter of Dehydration and Decomposition;471
53.4;4 Conclusion;472
53.5;References;473
54;49 Numerical Study on Microchannel Heat Sink with Asymmetric Leaf Pattern;474
54.1;1 Introduction;474
54.2;2 Numerical Simulation;477
54.2.1;2.1 Geometry of Microchannel;477
54.2.2;2.2 Governing Equations;478
54.2.3;2.3 Boundary Conditions;479
54.3;3 Results and Discussion;481
54.3.1;3.1 Velocity and Temperature Profile;481
54.3.2;3.2 Heat Transfer Characteristics;483
54.3.3;3.3 Pressure Drop Characteristics;483
54.4;4 Conclusions;485
54.5;References;486
55;50 Experimental Study of Thermal Energy Storage System Using Nanofluid;487
55.1;1 Introduction;487
55.2;2 Experimental Setup;488
55.3;3 Results and Discussions;488
55.3.1;3.1 Charging Process;488
55.3.2;3.2 Discharging Process;491
55.4;4 Conclusions;491
55.5;References;492
56;51 An Approach to Harness Energy by SnO2 Thin Film Electrode by Thermal Evaporation;493
56.1;1 Introduction;493
56.2;2 Experimental Detail;494
56.3;3 Results and Discussion;495
56.3.1;3.1 Structural and Morphology Analysis;495
56.3.2;3.2 CV, Charge/Discharge and Cyclic Stability Study;495
56.4;4 Conclusion;497
56.5;Acknowledgements;497
56.6;References;497
57;52 Efficient Electrodeposited Nickel Oxide Thin Films for Supercapacitor Electrode;499
57.1;1 Introduction;499
57.2;2 Experimental Details;500
57.3;3 Result and Discussions;501
57.3.1;3.1 X-ray Diffraction Study;501
57.3.2;3.2 Surface Morphology Study;501
57.3.3;3.3 Wettability Study;501
57.4;4 Supercapacitive Studies;502
57.4.1;4.1 Cyclic Voltammetry;502
57.4.2;4.2 Galvanostatic Charge–Discharge Studies;503
57.5;5 Conclusions;503
57.6;Acknowledgements;503
57.7;References;504
58;53 Effect of Waiting Time on Opto-electronic Properties of Antimony Doped Tin Oxide Thin Films for Transparent Conducting Oxide Applications;505
58.1;1 Introduction;505
58.2;2 Results and Discussion;506
58.2.1;2.1 Optical Properties;506
58.2.2;2.2 Electrical Properties;507
58.2.3;2.3 Figure of Merit;508
58.3;3 Conclusions;508
58.4;Acknowledgements;508
58.5;References;508
59;54 Nanoflakes MnO2 Thin Film as a Supercapacitor Electrode;509
59.1;1 Introduction;509
59.2;2 Experimental Details;510
59.2.1;2.1 Chemicals;510
59.2.2;2.2 Synthesis of MnO2 Thin Films;510
59.2.3;2.3 Characterization Techniques;510
59.3;3 Results and Discussions;511
59.3.1;3.1 Structural and Surface Morphological Studies;511
59.3.2;3.2 Supercapacitive Studies;512
59.3.2.1;3.2.1 Cyclic Voltammetric Study;512
59.3.2.2;3.2.2 Galvanostatic Charge-Discharge Study;513
59.4;4 Conclusions;514
59.5;Acknowledgements;515
59.6;References;515
60;55 Experimental Studies on Curvilinear Laser Bending of Thin Sheets;516
60.1;1 Introduction;516
60.2;2 Experimental Setup;518
60.2.1;2.1 CO2 Laser Machine Setup;518
60.2.2;2.2 Workpiece Holding Fixture;518
60.2.3;2.3 Workpiece Details;520
60.2.4;2.4 Irradiation Details;520
60.2.5;2.5 Bend Angle Measurement;520
60.3;3 Analysis of Results;521
60.3.1;3.1 Studies on Bend Angle;521
60.3.1.1;3.1.1 Effect of Laser Power;521
60.3.1.2;3.1.2 Effect of Scan Speed;522
60.3.2;3.2 Parabolic Heating with Step Irradiations;522
60.3.3;3.3 Variation in Bend Angle Along Scanning Path (Edge Effect);523
60.4;4 Conclusions;524
60.5;References;524
61;56 A Comparative Study on Mechanical and Tribological Properties of Epoxy Composites Filled with Nano-ZrO2 and Nano-Al2O3 Fillers;526
61.1;1 Introduction;526
61.2;2 Experimental;528
61.2.1;2.1 Resin System;528
61.2.2;2.2 Fillers;528
61.2.3;2.3 Fabrication of Epoxy Nanocomposites;528
61.2.4;2.4 Characterization;529
61.3;3 Results and Discussion;530
61.3.1;3.1 Mechanical Properties;530
61.3.2;3.2 Tribological Properties;531
61.4;4 Conclusions;533
61.5;References;534
62;Lab-Level Advanced Societal Technologies;535
63;57 Synthesis of TiO2 Nanofibers for Solar Cells and Their Analysis Using Statistical Tool—ANOVA;536
63.1;1 Introduction;536
63.2;2 Experimental Procedure;537
63.2.1;2.1 Materials;537
63.2.2;2.2 Preparation of TiO2;537
63.2.3;2.3 Electrospinning Experiments;537
63.2.4;2.4 Design of Experiments;538
63.3;3 Characterization;539
63.4;4 Results and Discussion;540
63.4.1;4.1 Optimization by One-Way ANOVA;540
63.4.2;4.2 Interaction Plots;541
63.5;5 Applications;541
63.6;6 Conclusion;542
63.7;References;542
64;58 Development of Experimental Setup for Measurement of Stored Hydrogen in Solids by Volumetric Method;543
64.1;1 Introduction;543
64.2;2 High Pressure Experimental Setup;544
64.2.1;2.1 High Vacuum System and Pressure Sensor;544
64.2.2;2.2 Temperature Controller, Temperature Indicator and Thermocouples;545
64.2.3;2.3 Reactor and Measuring Chamber;545
64.3;3 Methodology;546
64.4;4 Calibration of Experimental Setup;548
64.5;5 Conclusion;550
64.6;Acknowledgements;550
64.7;References;550
65;59 Optimization of Biodiesel Synthesis from Karanja Oil Using Heterogeneous Catalyst by Transesterification Process;552
65.1;1 Introduction;552
65.1.1;1.1 Importance;552
65.1.2;1.2 Biodiesel;552
65.1.3;1.3 Heterogeneouscatalyst;553
65.1.4;1.4 Transesterification Process;553
65.1.5;1.5 Steps for Transesterification Process;553
65.2;2 Experimental Setup for Biodiesel Production by Transesterification Process;554
65.3;3 Different Parameters Affecting the Transesterification Process;555
65.4;4 Results by Variation of Different Parameters Obtained for Karanja Oil with CaO Catalyst Are as Follows;555
65.4.1;4.1 Effect of Molar Ratio;555
65.4.2;4.2 Effect of Catalyst %;556
65.4.3;4.3 Effect of Reaction Temperature;557
65.4.4;4.4 Effect of Reaction Time;557
65.4.5;4.5 Effect of Reaction Speed;559
65.5;5 Conclusion;559
65.6;References;560
66;60 Parametric Studies on Thermo-electric Power Generation Using Micro Combustor;561
66.1;1 Introduction;561
66.2;2 Experimental Methodology;562
66.2.1;2.1 Micro Combustor Configuration;562
66.2.2;2.2 Details of Experimental Method;563
66.3;3 Results and Discussions;564
66.3.1;3.1 Thermal Characteristics and Flame Stability Limit;564
66.3.1.1;3.1.1 Effect of Thermal Conductivity of Heating Cup;564
66.3.1.2;3.1.2 Effect of Porous Media on the Flame Stability;565
66.3.2;3.2 Integration of the Combustor and Thermoelectric Generators;567
66.4;4 Conclusion;568
66.5;References;568
67;61 Validation of in House PCR Using IS6110 for Detection of M. tuberculosis and Its Comparison with ZN Staining, Cultures and RT PCR Kit Methods;570
67.1;1 Introduction;570
67.2;2 Methodology;571
67.2.1;2.1 Sample Collection;571
67.2.2;2.2 Sample Processing;571
67.2.3;2.3 Mycobacterial DNA Extraction from Sputum;572
67.2.4;2.4 Analysis of Amplified Product;573
67.2.5;2.5 RT-PCR with Commercial Kit;573
67.2.6;2.6 Statistical Analysis;573
67.3;3 Results;574
67.3.1;3.1 In-House Conventional PCR;574
67.3.2;3.2 AFB Smear Negative—Culture Positive and PCR Positive;574
67.3.3;3.3 Comprehensive Comparison of Different Techniques;575
67.4;4 ROC Curve Analysis;576
67.5;5 Conclusion;578
67.6;References;578
68;62 Novel Method for Fabrication and Characterization Porous Structure Using Rapid Prototyping and Thermal Gradient Method;581
68.1;1 Introduction;581
68.2;2 Method of Preparation of Hydroxyapatite;582
68.3;3 Particle Size Distribution;583
68.4;4 Construction and Working Principle;583
68.5;5 Layer-Wise Slurry Deposition (LSD) Process;584
68.5.1;5.1 Mechanism;586
68.6;6 Characterization of Fabricated Hydroxyapatite Bio Film;587
68.6.1;6.1 FT-IR Analysis;587
68.6.2;6.2 SEM Analysis;588
68.6.3;6.3 XRD Analysis;589
68.6.4;6.4 Elemental Analysis;589
68.6.5;6.5 DTA and TGA Analysis;589
68.7;7 Conclusions;591
68.8;References;591
69;63 Role of Gene Xpert in Early Diagnosis and Treatment of Tuberculosis;592
69.1;1 Introduction;592
69.2;2 Materials and Methods;593
69.2.1;2.1 Method;593
69.3;3 Results and Discussion;594
69.4;4 Conclusion;595
69.5;References;596
70;64 Synthesis and Characterization of MoS2-Graphene Nanocomposite;597
70.1;1 Introduction;597
70.2;2 Experimental;598
70.2.1;2.1 Synthesis of Graphene Nanosheets (RGO);598
70.2.2;2.2 Synthesis of MoS2/Graphene Nanocomposite;598
70.2.3;2.3 Characterization;599
70.3;3 Results and Discussion;599
70.4;4 Conclusion;601
70.5;References;601
71;65 Heat Transfer Intensification with Different Width Swirl Generator;603
71.1;1 Introduction;603
71.2;2 Methodology;604
71.2.1;2.1 Experimental Procedure;604
71.2.2;2.2 Heat Transfer Calculations;604
71.2.2.1;2.2.1 Reynolds Number Evaluation;604
71.2.2.2;2.2.2 Nusselt Number Evaluation;605
71.2.2.3;2.2.3 Friction Factor Evaluation;606
71.3;3 Thermal Characteristic;607
71.3.1;3.1 Heat Transfer Characteristics;607
71.3.2;3.2 Overall Enhancement Characteristics;609
71.4;4 Conclusions;610
71.5;References;611
72;66 Synthesis and Characterization of ZnO Nanorod Array on FTO Glass by Using Hydrothermal Method;612
72.1;1 Introduction;612
72.2;2 Experimental;613
72.2.1;2.1 Characterizations;614
72.3;3 Results and Discussion;614
72.4;4 Conclusions;615
72.5;Acknowledgements;616
72.6;References;616
73;67 Design and In-Vitro Evaluation of Nicorindil Biphasic Drug Delivery System for Angina Pectoris;617
73.1;1 Introduction;617
73.2;2 Materials;618
73.3;3 Methodology;619
73.3.1;3.1 Preparation of Fast Release Component [5];619
73.3.2;3.2 Preparation of Prolonged-Release Component (Mini-Tablets);619
73.3.3;3.3 Preparation of Multiple Compressed Tablets;620
73.3.4;3.4 Evaluation of Tablets [6, 7];620
73.3.4.1;3.4.1 Weight Variation;620
73.3.4.2;3.4.2 In-Vitro Dissolution Studies;620
73.4;4 Results and Discussion;621
73.4.1;4.1 Friability;621
73.4.2;4.2 Hardness;621
73.4.3;4.3 Thickness;621
73.4.4;4.4 Drug Content;622
73.4.5;4.5 IR Spectra of F4 Formulation;622
73.5;References;624
74;68 SILAR Synthesis and Cyclic Voltammetric Study of PPy-Cu(OH)2 Composite Flexible Electrodes for Supercapacitors;625
74.1;1 Introduction;625
74.2;2 Experimentation;626
74.2.1;2.1 Precursors;626
74.2.2;2.2 Electrode Preparation;627
74.2.3;2.3 Characterizations;627
74.2.3.1;2.3.1 Structural Characterizations;627
74.2.3.2;2.3.2 Electrochemical Characterizations;628
74.3;3 Results and Discussion;628
74.3.1;3.1 Film Formation Mechanism;628
74.3.2;3.2 Physical Characterizations;629
74.3.3;3.3 Cyclic Voltammetry;630
74.4;4 Conclusions;631
74.5;References;632
75;69 Root Canal Filling Process Enhancement in Simulated Dental Blocks Using a Novel Device;633
75.1;1 Introduction;633
75.2;2 Materials and Methodology Adopted for Obturation of the Root Canal System;635
75.2.1;2.1 Obturation of the Root Canal System Involves;635
75.2.2;2.2 Filling Canals with GP Using Dual Energy Technique;635
75.3;3 Weight Analysis of Blocks After Filling GP;637
75.3.1;3.1 Comparison of Blocks;637
75.3.2;3.2 Weight Analysis of Dental Blocks;638
75.3.3;3.3 Evaluation of Percentage GP Enhancement in Simulated Dental Blocks;638
75.3.3.1;3.3.1 Blocks Utilized in the Current Study;638
75.3.3.2;3.3.2 Percentage Enhancement in GP Compaction (with and Without Vibration);638
75.4;4 Mass of GP Compacted in Root Canal;638
75.5;5 Volume of Root Canal Based on Mass of Material Compacted;639
75.6;6 Statistical Analysis Using ‘Student-t test’;639
75.6.1;6.1 Case 1: For Varying Excitation Frequencies 10–100 Hz at Dental Tip;639
75.6.2;6.2 Case 2: For Constant Excitation Frequencies of 50 Hz at Dental Tip;641
75.7;7 Statistical Analysis Using One Way Analysis of Variance;641
75.8;8 Conclusion;642
75.9;Acknowledgements;643
75.10;References;643
76;Manufacturing and Fabrication Processes for Societal Applications;644
77;70 Analysis of Surface Integrity and Dimensional Accuracy During Thin-Wall Machining;645
77.1;1 Introduction;645
77.2;2 Experimental Details;646
77.3;3 Results and Discussion;646
77.3.1;3.1 Analysis of Dimensional Accuracy;648
77.3.2;3.2 Analysis of Surface Finish and Surface Integrity;649
77.4;4 Conclusions;651
77.5;Acknowledgements;651
77.6;References;651
78;71 Wear Behaviour of D-Gun Sprayed Coatings on Ductile Cast Iron;653
78.1;1 Introduction;653
78.2;2 Experimental;654
78.2.1;2.1 Materials and Coatings;654
78.2.2;2.2 Coating Powders;655
78.2.3;2.3 Deposition of Coatings by Detonation Spray Process;655
78.2.4;2.4 Wear Test Using Pin-on-Disc Apparatus;656
78.2.4.1;2.4.1 Experimental Set up;656
78.2.4.2;2.4.2 Sliding Wear Studies;656
78.2.4.3;2.4.3 Wear Rate;657
78.2.4.4;2.4.4 Wear Volume;657
78.2.5;2.5 Field Trial and Assessment;658
78.3;3 Result and Discussion;659
78.3.1;3.1 Wear Behavior;659
78.3.1.1;3.1.1 Laboratory Test;659
78.3.1.2;3.1.2 Field Trial Observations;660
78.3.1.3;3.1.3 Weight Loss and Wear Rate Assessment;660
78.4;4 Conclusions;661
78.5;References;661
79;72 Experimental Analysis of Different Compositions of Carbon Fiber/Epoxy Composite and Its Application in Leaf Spring;662
79.1;1 Introduction;662
79.2;2 Experimental Procedure;663
79.2.1;2.1 Materials and Methods;663
79.3;3 Results and Discussion;664
79.3.1;3.1 Mechanical Testing;664
79.3.2;3.2 Experimental Testing Using FFT Analyzer;666
79.3.2.1;3.2.1 Modal Analysis;666
79.3.2.2;3.2.2 Comparison Between Experimental and FEA Results;668
79.3.2.3;3.2.3 Comparison Between Steel and Composite Leaf Spring;668
79.4;4 Conclusions;669
79.5;References;669
80;73 Development of a Friction Welded Bimetallic Joints Between Titanium and 304 Austenitic Stainless Steel;671
80.1;1 Introduction;671
80.2;2 Experimental Method;672
80.3;3 Results and Discussion;673
80.3.1;3.1 Mechanical Properties;673
80.3.2;3.2 Microstructural Observations;676
80.3.3;3.3 Fracture Morphology Studies;677
80.4;4 Conclusion;678
80.5;References;678
81;74 Developing an Empirical Relationship to Predict Tensile Strength and Micro Hardness of Friction Stir Welded Aluminium Alloy Joints;680
81.1;1 Introduction;680
81.2;2 Experimental;680
81.2.1;2.1 Selection of Material;681
81.2.2;2.2 Identification of Important Friction Stir Welding Parameters;681
81.2.3;2.3 Development of Design Matrix;682
81.2.4;2.4 Selection of Mathematical Model;682
81.2.5;2.5 Development of Model for Tensile Strength;685
81.2.6;2.6 Development of Model for Percentage Elongation;687
81.2.7;2.7 Development of Model for Micro Hardness;688
81.3;3 Conclusions;689
81.4;References;689
82;75 New Design Approach of Helical Coil Spring for Longitudinal and Translational Invariance by Using Finite Element Analysis;690
82.1;1 Introduction;690
82.2;2 Design of Helical Coil Spring;690
82.2.1;2.1 Variation of Maximum Shear Stress Theoretically and Maximum Shear Stress Analytically with Load;691
82.3;3 Finite Element Analysis of Helical Compression Spring by Using ANSYS;691
82.4;4 Experimental Approach for Analysis;693
82.4.1;4.1 Testing of Helical Compression Spring for Load and Deflection;693
82.5;5 Probabilistic Design of Helical Coil Spring for Longitudinal Invariance by Using Finite Element Method;694
82.6;6 Probabilistic Design of Helical Coil Spring for Translational Invariance by Using Finite Element Method;696
82.7;7 Result and Discussion;696
82.7.1;7.1 Comparison Based on Load Verses Deflection;696
82.7.2;7.2 Comparison Results of Maximum Shear Stress and Deflection;696
82.8;8 Conclusion;699
82.9;References;699
83;76 Material Removal Rate and Surface Roughness Optimization in WEDM on Tool Steel EN-31 Using Taguchi Approach;700
83.1;1 Introduction;700
83.2;2 Materials and Methods;702
83.3;3 Design of Experiments;703
83.4;4 Taguchi’s Optimization Technique;704
83.5;5 Results and Discussion;706
83.5.1;5.1 Effect on Material Removal Rate (MRR);706
83.5.2;5.2 Effect on Surface Roughness (SR);708
83.6;6 Confirmation Experiment and Conclusion;710
83.7;References;711
84;77 Automatic Gear Change Mechanism for Two-Wheeler Automobiles;712
84.1;1 Introduction;712
84.2;2 System Description;713
84.2.1;2.1 Complete Product Package;713
84.2.2;2.2 Selection of Sensors, Controller and Actuator;714
84.2.3;2.3 Interfacing and Control;716
84.2.4;2.4 Adaptation with Existing Automobile;717
84.3;3 Results;719
84.4;4 Discussion and Future Scope;720
84.4.1;4.1 Discussion and Comparison with Existing Methods;720
84.4.2;4.2 Future Scope;721
84.5;5 Conclusion;721
84.6;References;721
85;78 Analysis of Water Lubricated Bearing with Different Features to Improve the Performance: Green Tribology;722
85.1;1 Introduction;722
85.2;2 Model of Plain Hydrodynamic Journal Bearing;723
85.3;3 CFD Model—Analysis;724
85.3.1;3.1 Governing Equations;724
85.3.2;3.2 Parameters and Variables;724
85.3.2.1;3.2.1 Parameters;724
85.3.2.2;3.2.2 Variables;724
85.3.3;3.3 Material Properties and Boundary Conditions;725
85.3.3.1;3.3.1 Material Properties;725
85.3.3.2;3.3.2 Boundary Conditions;725
85.3.4;3.4 Analysis and Results;726
85.3.4.1;3.4.1 Analysis of Plain Journal Bearing;726
85.3.4.2;3.4.2 Results of Plain Journal Bearing;726
85.3.4.3;3.4.3 Analysis of Journal Bearing with Different Surface Features;727
85.3.4.4;3.4.4 Results of Journal Bearing with Different Surface Features;728
85.4;4 Conclusions;729
85.5;References;729
86;79 Design and Construction of Briefcase Type Portable Solar Dryer;731
86.1;1 Introduction;731
86.2;2 Constructions;733
86.2.1;2.1 Solar Panel;733
86.2.2;2.2 Battery;733
86.2.3;2.3 Exhaust Fans;733
86.2.4;2.4 Reflector;733
86.2.5;2.5 Glass;734
86.2.6;2.6 Heating Element;734
86.2.7;2.7 Assembly;734
86.3;3 Experimentation;735
86.3.1;3.1 Experimentation on Potato;735
86.3.2;3.2 Experimentation on Tulasi;736
86.4;4 Conclusions;737
86.5;References;738
87;80 Crashworthiness Improvement for Rollover of Bus Using FEA;739
87.1;1 Introduction;739
87.2;2 Rollover Analysis of Bus;740
87.2.1;2.1 Theory of Rollover Test on Bus;741
87.3;3 Finite Element Modelling;741
87.3.1;3.1 CAD Model (Geometric Model);741
87.3.2;3.2 Meshing of Bus Structure;742
87.4;4 Numerical Analysis;743
87.4.1;4.1 Design Suggestions for New Bus Model;743
87.4.2;4.2 Rollover with Redesigned Model (Stiffer/New Model);745
87.5;5 Results;745
87.6;6 Conclusion;745
87.7;References;746
88;81 Optimization of P-GMAW Welding Parameters Using Taguchi Technique for SS304L Pipes;747
88.1;1 Introduction;747
88.2;2 Literature Review;748
88.3;3 Experimental Details;749
88.3.1;3.1 Material Selection;749
88.3.2;3.2 Taguchi Technique;750
88.3.3;3.3 S/N Ratio;750
88.3.4;3.4 Experimental Parameter;751
88.3.5;3.5 Experimental Work;751
88.4;4 ANOVA Table and Response Calculation;753
88.5;5 Result and Discussion;754
88.6;6 Verification Experiment;756
88.7;7 Conclusion;756
88.8;Acknowledgements;757
88.9;References;757
89;82 Impact Analysis and Topology Optimization of Pultruded Automotive Bumper;758
89.1;1 Introduction;758
89.2;2 Theoretical Calculations;759
89.3;3 Material Data;759
89.3.1;3.1 Correlation with FEA;759
89.4;4 Experimental Data;760
89.4.1;4.1 Three Point Bend Test;760
89.4.2;4.2 Ball Impact Test;760
89.5;5 FEA Analysis;762
89.5.1;5.1 Three Point Bend Test;762
89.5.2;5.2 Ball Drop Test;762
89.6;6 Result and Discussions;763
89.7;7 Topology Optimization;764
89.7.1;7.1 Load Tracking in Impact;764
89.7.2;7.2 Cross Section Optimization;764
89.7.3;7.3 Result and Discussions;766
89.8;8 Conclusion;766
89.9;References;766
90;83 Simulation of Micro-indentation Process of Black NiAl Coated Aluminum Substrate Using FEM;767
90.1;1 Introduction;767
90.2;2 Material Preparation and Experimentation;768
90.2.1;2.1 Coating Process of Black NiAl Coating on Aluminum Substrate;768
90.2.2;2.2 Micro-indentation Experiment;768
90.3;3 Finite Element Procedure;769
90.4;4 Results and Discussion;771
90.4.1;4.1 Experimental Results;771
90.4.2;4.2 Finite Element Analysis;772
90.5;5 Conclusion;775
90.6;References;775
91;84 Assembly Method of Pre Twisted Steam Turbine Blades;776
91.1;1 Introduction;776
91.2;2 Method of Pre Twisted Steam Turbine Blade Assembly;778
91.3;3 System of Pre Twisted Blade Assembly;778
91.3.1;3.1 Detailed View of Blade Assembly;778
91.3.2;3.2 Drawing Description;778
91.3.3;3.3 Fixture Assembly;782
91.3.4;3.4 Closing Blade Assembly;783
91.4;4 Assembly Procedure;784
91.5;5 Natural Frequency Test of Pre Twisted Blades;785
91.5.1;5.1 Measurement System;785
91.5.2;5.2 Measurements;785
91.5.3;5.3 Procedure;785
91.5.4;5.4 Comparison of Natural Frequency of Old Rotor Assembly and New Rotor Assembly;786
91.6;6 Conclusions;788
91.7;References;788
92;85 Thermal Performance of Parabolic Dish Water Heater with Helical Coiled Receiver;789
92.1;1 Introduction;790
92.2;2 Test Set Up and System Parameters;791
92.3;3 Calculations;793
92.3.1;3.1 Useful Heat Gain by the Water;793
92.3.2;3.2 Calculation of Heat Losses from the Receiver;793
92.4;4 Uncertainty Analysis;794
92.5;5 Results and Discussion;795
92.5.1;5.1 Effect of Wind Velocity on Overall Heat Loss Coefficient and Collector Efficiency;795
92.5.2;5.2 Effect of Heat Loss on Collector Efficiency and Heat Gain;796
92.5.3;5.3 Effect of Receiver Temperature on Temperature Gradient and Collector Efficiency;797
92.5.4;5.4 Effect of Beam Solar Radiation and Wind Velocity on Collector Efficiency;798
92.5.5;5.5 Effect of Overall Heat Loss Coefficient and Receiver Temperature on Collector Efficiency;798
92.6;6 Conclusions;799
92.7;References;800
93;86 Application of MOORA Method for Friction Stir Welding Tool Material Selection;801
93.1;1 Introduction;802
93.2;2 FSW Tool Material Selection;805
93.2.1;2.1 FSW Tool Material Selection Criteria;805
93.2.2;2.2 Application of MOORA Method for FSW Tool Material Selection;807
93.3;3 Conclusions;809
93.4;Acknowledgements;809
93.5;References;809
94;87 Development of Prototype of Light Passenger Quarter Car for Improved Vehicle Ride Characteristics;811
94.1;1 Introduction;811
94.2;2 Development of Prototype of Quarter Car;813
94.2.1;2.1 2 DOF P-QCSS Model;814
94.2.2;2.2 2 DOF HA-QCSS Model;815
94.3;3 Simulation Analysis;816
94.3.1;3.1 Development of Program in SIMULINK for 2 DOF P-QCSS Model;816
94.3.2;3.2 Development of Program in SIMULINK 2 DOF HA-QCSS Model;818
94.4;4 Experimental Analysis;819
94.4.1;4.1 Experimental Results of 2 DOF P-QCSS and HA-QCSS;819
94.4.2;4.2 Simulation Results of 2 DOF P-QCSS and HA-QCSS;821
94.5;5 Conclusion;822
94.6;References;822
95;88 Sheet Metal Piercing Punch Material Selection Using Complex Proportional Assessment Method;824
95.1;1 Introduction;824
95.2;2 Multi-criteria Decision-Making Method;825
95.2.1;2.1 Complex Proportional Assessment Method;825
95.3;3 Illustrative Example;828
95.3.1;3.1 COPRAS Method;829
95.4;4 Conclusion;831
95.5;References;831
96;89 Investigation of Thermal Performance of FRP Parabolic Trough Collector Using Different Receivers;833
96.1;1 Introduction;833
96.2;2 Theory of Basic Thermal Performance;835
96.2.1;2.1 Overall Loss Coefficient and Heat Correlations;836
96.2.2;2.2 Heat Transfer Coefficient Between the Absorber Tube and the Cover;837
96.2.3;2.3 Heat Transfer Coefficient on the Inside Surface of the Absorber Tube;837
96.3;3 System Description;837
96.4;4 Experimental Procedure;839
96.5;5 Results and Discussions;839
96.6;6 Conclusions;842
96.7;Acknowledgements;843
96.8;References;843
97;90 Investigation of Load Carrying Capacity for Steering System with Polymer Helical Rack and Pinion Gear;844
97.1;1 Introduction;844
97.2;2 Design of Steering Rack and Pinion Gear Box;845
97.2.1;2.1 Loading Condition for Steering Gear Box;845
97.2.2;2.2 Selection of Suitable Gear Module;845
97.2.3;2.3 Design of Helical Rack and Pinion Gear Pair by AGMA Approach;846
97.3;3 Finite Element Analysis of Steering Gear Box;848
97.3.1;3.1 Finite Element Analysis of Nylon 6/6 Gear Pair;848
97.3.2;3.2 Finite Element Analysis of Delrin Gear Pair;848
97.4;4 Experimental Stress Analysis of Steering Gear Box;851
97.4.1;4.1 Experimental Strain Analysis Test Observations and Results;851
97.5;5 Result and Discussion;852
97.5.1;5.1 Design, FEA and ESA Comparative Results of Gear Pair;852
97.5.2;5.2 Weight and Cost Analysis of Gear Pair;854
97.5.3;5.3 LifeSpan of Gear;854
97.5.4;5.4 Societal Application of Gear Pair;854
97.6;6 Conclusion;855
97.7;References;855
98;91 Dry Sliding Wear Performance Optimization of MoS2 Filled PTFE Composites Using Taguchi Approach;856
98.1;1 Introduction;856
98.2;2 Wear Testing;857
98.3;3 Experimental Design;858
98.4;4 Results and Discussion;859
98.4.1;4.1 Statistical Analysis of Wear Rate;859
98.4.2;4.2 Confirmation Experiment;863
98.5;5 SEM and EDX Results;864
98.6;6 Conclusions;865
98.7;References;866
99;92 Tribological Behavior of Al6061 Alloy Reinforced with Fly Ash Particles;867
99.1;1 Introduction;867
99.2;2 Methodology;868
99.3;3 Results and Discussions;868
99.3.1;3.1 Wear Test;868
99.3.2;3.2 Microstructure;872
99.4;4 Conclusion;874
99.5;References;875
100;93 A Study on Partial Automation of Lac Bangle Manufacturing in Pandharpur;876
100.1;1 Introduction;876
100.2;2 Literature Survey;877
100.2.1;2.1 History of Lac Bangles;877
100.2.2;2.2 Traditional Procedure of Bangle Making;877
100.2.3;2.3 Drawbacks of the Traditional Process;879
100.2.4;2.4 Lac Bangles Manufacturing Survey in Pandharpur;879
100.2.5;2.5 Swot Analysis;880
100.3;3 Automation in the Lac Bangle Manufacturing Process;881
100.3.1;3.1 Automation Is a Key for Survival of Lac Bangle Manufacturers;881
100.3.2;3.2 Lac Bangle Manufacturing Through Partial Automation;881
100.3.3;3.3 Scope for Automation in Lac Bangle Manufacturing;881
100.4;4 Suggestions Based on the Study;882
100.5;References;883
101;94 Parametric Optimization for Photochemical Machining of Copper Using Grey Relational Method;884
101.1;1 Introduction;884
101.2;2 Materials and Methods;885
101.2.1;2.1 Material;885
101.2.2;2.2 Experimental Procedure;885
101.2.3;2.3 Selection of Parameters;886
101.2.4;2.4 Taguchi Design of Experiments;887
101.2.5;2.5 Photo Tool Analysis;887
101.2.6;2.6 Experimentation;887
101.3;3 Results and Discussion;889
101.3.1;3.1 Effect of Process Parameters on Edge Deviation (ED);890
101.3.2;3.2 Effect of Process Parameters on Material Removal Rate (MRR);890
101.3.3;3.3 Optimization Using Grey Relational Analysis;891
101.3.4;3.4 Use of the Study for Societal Application;893
101.4;4 Conclusions;893
101.5;References;894
102;Infrastructure Developments for Societal Applications;895
103;95 Buried Pipelines Deformation Behavior in Different Soils Using Geofoam;896
103.1;1 Introduction;896
103.2;2 Motivation Behind Present Study;897
103.3;3 Model Materials;897
103.3.1;3.1 Soil;897
103.3.2;3.2 Geofoam;899
103.3.3;3.3 HDPE Pipe;899
103.4;4 Model Test Package and Test Procedure;900
103.5;5 Test Program;901
103.6;6 Analysis and Interpretation;902
103.7;7 Results and Discussion;903
103.8;8 Conclusions;903
103.9;References;904
104;96 A Time Dependent Scour Around Circular Piers Under Unsteady Flow;905
104.1;1 Introduction;905
104.2;2 Experimental Set up and Procedure;907
104.3;3 Modification in Existing Flume;908
104.4;4 Result and Discussion;909
104.5;5 Conclusion;916
104.6;References;916
105;97 Implementation of Methodology for Wastewater Treatment from Textile Industry;917
105.1;1 Introduction;917
105.2;2 Intended Beneficiaries;918
105.3;3 Methods;918
105.4;4 Physicochemical Waste Water Treatment;919
105.5;5 Hardware Project;920
105.6;6 Chemical Components;921
105.7;7 Results;922
105.8;8 Conclusion;923
105.9;References;923
106;98 Improving Torsional Seismic Response of Plan Asymmetric Structures Using Energy Dissipating Devices;924
106.1;1 Introduction;924
106.1.1;1.1 Background to the Study;924
106.1.2;1.2 Structural Irregularity in Buildings;925
106.1.3;1.3 Basic Principles of Seismic Response Control;925
106.1.4;1.4 Seismic Response Reduction by Visco-elastic Devices;926
106.2;2 Seismic Analysis Considerations;927
106.2.1;2.1 Torsion in Plan Asymmetric Buildings;927
106.2.2;2.2 Mathematical Modeling of Visco-elastic Device Response;928
106.2.2.1;2.2.1 Maxwell Spring-Dashpot Model;928
106.2.2.2;2.2.2 Kelvin–Voight Model;928
106.3;3 Methodology of Present Study;929
106.3.1;3.1 Strong Motions;929
106.3.2;3.2 Visco-elastic Device Design;929
106.3.3;3.3 Plan Asymmetric Buildings;929
106.3.4;3.4 Performance Requirement;931
106.3.5;3.5 Device Optimum Placement Strategy;931
106.3.6;3.6 Performance Evaluation and Optimized Selection;931
106.4;4 Results and Discussion;932
106.4.1;4.1 Results for L Shape Building;933
106.5;5 Conclusions;934
106.6;References;934
107;99 Optimization of Cables in Cable Stayed Bridge;935
107.1;1 Introduction;935
107.2;2 Optimization Methods of Cable Stayed Bridge;936
107.3;3 The Analysis Programme;937
107.4;4 Description of Bridge;937
107.4.1;4.1 Location of Project Site, Geometry and Cross Section of Bankot Bridge;937
107.4.2;4.2 Properties Considered for Elements in Model;939
107.4.3;4.3 Midas Model and Methodology of Analysis;942
107.5;5 Optimisation Technique Implemented in MIDAS;943
107.6;6 Results;943
107.7;7 Conclusion;946
107.8;References;946
108;100 Vibration Isolation of Single-Degree-Freedom System Using Permanent Magnets;947
108.1;1 Introduction;947
108.2;2 Methodology;948
108.2.1;2.1 Problem Statement;948
108.2.2;2.2 Procedure;949
108.3;3 Results and Discussions;950
108.3.1;3.1 Results;950
108.4;4 Conclusion;954
108.5;5 Future Scope;954
108.6;References;955
109;101 Study on Behavior of Externally Bonded RC Beams Using Armid Fiber Sheets;956
109.1;1 Introduction;956
109.2;2 Experimental Investigation;957
109.2.1;2.1 Details of the Beam Specimen;957
109.2.2;2.2 Preparation of Test Specimen;957
109.2.3;2.3 Test Setup;959
109.2.4;2.4 Test Result;960
109.2.5;2.5 Ultimate Load Carrying Capacity;960
109.3;3 Finite Element Modeling;961
109.3.1;3.1 Ultimate Load Carrying Capacity;962
109.4;4 Conclusions;964
109.5;References;964
109.6;Journal Papers;964
109.7;Books;965
109.8; ACI/IS Codes;965
110;ICT Based Societal Technologies;966
111;102 Forecasting Monsoon Rainfall Over India Based on Global Climate Parameters;967
111.1;1 Introduction;967
111.2;2 Data;970
111.3;3 Methodology;970
111.3.1;3.1 Seasonal ISMR Prediction;971
111.4;4 Discussion;974
111.5;5 Conclusions;975
111.6;References;975
112;103 Augmented Reality in Higher Education Supported with Web 2.0: A Case Study in Chemistry Course;977
112.1;1 Introduct?on;977
112.2;2 Literature Review;978
112.3;3 Research Methodology;979
112.3.1;3.1 Prototype Architecture;979
112.3.2;3.2 Experimental Setup;979
112.3.2.1;3.2.1 Measurement Instruments;981
112.4;4 Data Analysis and Findings;982
112.4.1;4.1 Overall Cognitive Performance;982
112.5;5 Conclusion;984
112.6;Acknowledgements;985
112.7;References;985
113;104 Implementation of QoS Based Policer in Routers for Next Generation Network (NGN);986
113.1;1 Introduction;986
113.2;2 Related Work;987
113.2.1;2.1 Literature Survey;987
113.2.2;2.2 QoS Mapping;988
113.3;3 Modeling Traffic on QoS Based Router for NGN;991
113.4;4 Simulation Results and Analysis;992
113.5;5 Conclusion;993
113.6;References;993
114;105 Wireless Sensor Networks for Societal Applications;995
114.1;1 Introduction;995
114.2;2 Applications of Sensor Networks;996
114.2.1;2.1 Environmental Applications;997
114.2.2;2.2 Military Applications;997
114.2.3;2.3 Home Applications;998
114.2.4;2.4 Health Applications;999
114.2.5;2.5 Other Commercial Applications;999
114.3;3 Motivating Parameters of WSN Design;1000
114.3.1;3.1 Fault Tolerance;1000
114.3.2;3.2 Flexibility;1001
114.3.3;3.3 Hardware Cost of SN;1002
114.3.4;3.4 Hardware Bounds;1002
114.3.5;3.5 WSN Technology;1003
114.3.6;3.6 Nature;1004
114.3.7;3.7 Transmission Channel for WSN;1005
114.3.8;3.8 Power Intake for WSN;1006
114.4;4 Architecture of SN;1007
114.5;5 Conclusion;1009
114.6;References;1010
115;106 Topology-Hiding Multipath Routing Protocol: A Modified Approach for Wireless Network;1013
115.1;1 Introduction;1013
115.2;2 Related Works;1014
115.3;3 Modified Topology-Hiding Multipath Routing Protocol (M-THMR);1015
115.4;4 Experimental Evaluations;1018
115.4.1;4.1 Simulation Setup;1018
115.4.2;4.2 Performance Analysis;1019
115.5;5 Conclusion;1021
115.6;References;1021
116;107 A Cloud Computing Based WSNs for Agriculture Management;1023
116.1;1 Introduction;1023
116.2;2 Proposed System;1024
116.2.1;2.1 WSN (Wireless Sensor Networks);1024
116.2.2;2.2 Ardunio;1025
116.2.3;2.3 Personal Computer;1025
116.2.4;2.4 Thingspeak;1026
116.2.5;2.5 Mobile/PC (Visualization);1026
116.3;3 System Flow Chart;1027
116.4;4 Results and Discussions;1028
116.5;5 Conclusion;1029
116.6;Acknowledgements;1029
116.7;References;1029
117;108 Analysis on an MHT Based Integrity Authentication Framework for Cloud Data Security;1030
117.1;1 Introduction;1030
117.2;2 Related Work;1031
117.3;3 Problem Statement Analysis;1031
117.4;4 System Design;1031
117.4.1;4.1 Data Owner;1032
117.4.2;4.2 Cloud Service Provider;1032
117.4.3;4.3 Merkle Hash Tree;1032
117.4.4;4.4 Trusted Third Party;1033
117.5;5 Implementation;1033
117.5.1;5.1 System Requirements;1033
117.5.2;5.2 Setup;1033
117.5.3;5.3 Encryption Phase;1033
117.5.4;5.4 Key Generation Phase;1034
117.5.5;5.5 Decryption Phase;1034
117.5.6;5.6 Data Update and Verification;1034
117.5.7;5.7 Public Auditing with All Replica;1034
117.6;6 Performance Analysis;1035
117.7;7 Conclusion;1036
117.8;References;1036
118;109 Historical Drought Analysis of Maharashtra State by Using SPI Index;1038
118.1;1 Introduction;1038
118.2;2 Objectives of Work;1039
118.3;3 Data;1039
118.4;4 Methodology;1040
118.5;5 Results and Discussions;1042
118.6;6 Conclusions;1045
118.7;References;1045
119;110 Statistical Downscaling of GCM Output for Generating Future Rainfall Scenarios Using SDSM for Upper Godavari Basin, Maharashtra;1046
119.1;1 Introduction;1046
119.2;2 Downscaling;1047
119.2.1;2.1 Statistical Downscaling Model (SDSM);1047
119.3;3 Study Area;1047
119.3.1;3.1 Data Used;1049
119.4;4 Methodology;1049
119.5;5 Results and Discussions;1049
119.5.1;5.1 Climate Change Scenarios (CCCma Under RCP2.6, RCP4.5, RCP8.5) by Downscaling Future Rainfall;1050
119.6;6 Conclusion;1052
119.7;References;1052
120;111 Design of MIMO Antenna for WLAN and Wi-Max Application;1053
120.1;1 Introduction;1053
120.2;2 Single Antenna Design;1054
120.2.1;2.1 Designing of UWB MSA Antenna;1054
120.2.2;2.2 Antenna Simulation Analysis;1055
120.3;3 MIMO Antenna Design and Analysis;1058
120.4;4 Comparison of Single Antenna and MIMO Antenna;1061
120.5;5 Conclusion;1061
120.6;References;1061
121;112 Secure Ration Dispensing System Using HAN and Geofencing Through Li-Fi;1062
121.1;1 Introduction;1062
121.2;2 Design and Implementation;1063
121.2.1;2.1 Human Area Networking (HAN);1063
121.2.2;2.2 Geofencing Through Li-Fi;1064
121.2.3;2.3 Implementation;1065
121.3;3 Working;1067
121.4;4 Benefits;1068
121.5;5 Limitations;1068
121.6;6 Results;1069
121.7;7 Conclusion;1069
121.8;8 Future Scope;1069
121.9;References;1070
122;113 Enhanced Digital Image Watermarking in Combination with Encryption;1071
122.1;1 Introduction;1071
122.1.1;1.1 Proposed Method;1072
122.1.2;1.2 Proposed Methodology;1073
122.2;2 Experiments and Results;1074
122.3;3 Conclusion;1078
122.4;References;1078
123;114 SNR Versus BER Performance and Effect of Changes in Hysteresis on Different Modes of IEEE 802.11a;1079
123.1;1 Introduction;1079
123.2;2 OFDM Principles;1080
123.3;3 Effect of Changes in Hysteresis on Different Modes;1081
123.4;4 Different Fading Modes;1082
123.4.1;4.1 Dispersive Fading Mode;1082
123.4.2;4.2 Flat Fading;1082
123.4.3;4.3 No Fading Mode;1083
123.5;5 Simulation Environment;1083
123.6;6 Conclusions;1087
123.7;Acknowledgements;1087
123.8;References;1087