Buch, Deutsch, Band 179, 232 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g
Die Anwendung von Fuzzy-Methoden in der Entscheidungstheorie
Buch, Deutsch, Band 179, 232 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g
Reihe: Wirtschaftswissenschaftliche Beiträge
ISBN: 978-3-7908-1337-1
Verlag: Physica-Verlag HD
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Sozialwissenschaften Soziologie | Soziale Arbeit Soziologie Allgemein Empirische Sozialforschung, Statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftstheorie, Wirtschaftsphilosophie
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
Weitere Infos & Material
1 Einleitung.- I: Grundlagen der Fuzzy-Mathematik.- 2 Charakterisierung der Fuzzy-Methode.- 3 Fuzzy-Mengen-Theorie.- 4 Fuzzy-Maßtheorie.- 5 Zur Synthese von Fuzzy-Mail-und Fuzzy-Mengen-Theorie.- 6 Fuzzy-Relationen.- II: Die Anwendung des Fuzzy-Ansatzes in der Entscheidungstheorie.- 7 Entscheidungen bei Unschärfe.- 8 Wahlhandlungstheorie im Fuzzy-Kontert.- 9 Die Anwendung von Fuzzy-Ansätzen bei Social Choice Problemen.- 10 Zusammenfassung und Ausblick.- 11 Anhang.- 11.1 Notation.- 11.2 Maßtheoretische Defmitionen.- 11.3 Die Frage nach subjektiver Einkommensbewertung imsozio-ökonomischen Panel.- 11.4 Beweis des Satzes: Archimedische Normen mit Nullteller sind nilpotent.- 11.5 Archimedische t-Normen mit Nullteiler und konjugierte Funktionen.- 11.6 Bedingungen für die gleichzeitige t-Norm-und t-Conorm-Zerlegbarkeitvon Fuzzy-Maßen.- 11.6.1 Nicht gleichzeitig t-Norm-und t-Conrom-zerlegbare Fuzzy-Maße.- 11.6.2 Gleichzeitig t-Norm-und t-Conrom-zerlegbare Fuzzy-Maßev.- 11.7 Strikte Präferenzrelation und Indifferenzrelation mit unterschiedlichenVernüpfungsoperatoren anhand des Beispiels.- 11.8 Fuzzy-Indifferenz-und strikte Fuzzy-Präferenzrelation.- 11.8.1 Ausgangspunkt: strikte Fuzzy-Präferenz.- 11.8.2 Ausgangspunkt: Fuzzy-Indifferenz.- 11.9 Programm zur Berechnung der „nächsten“ scharfen Präferenzordnung.- 11.10 Berechnung des unteren Choquet-Integral für alle drei Individuen.- 12 Literatur.