E-Book, Deutsch, Englisch, Band 1, 551 Seiten
Reihe: Ontos Mathematical LogicISSN
E-Book, Deutsch, Englisch, Band 1, 551 Seiten
Reihe: Ontos Mathematical LogicISSN
ISBN: 978-3-11-032546-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Autoren/Hrsg.
Fachgebiete
- Geisteswissenschaften Philosophie Geschichte der Westlichen Philosophie Westliche Philosophie: 20./21. Jahrhundert
- Mathematik | Informatik Mathematik Mathematik Allgemein Philosophie der Mathematik
- Geisteswissenschaften Philosophie Philosophie der Mathematik, Philosophie der Physik
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
- Geisteswissenschaften Philosophie Philosophische Logik, Argumentationstheorie
Weitere Infos & Material
1;Preface;7
2;Darren Abramson¤Church’s Thesis and Philosophy of Mind;9
3;Andreas Blass, Yuri Gurevich¤Algorithms: A Quest for Absolute Definitions;24
4;Douglas S. Bridges¤Church’s Thesis and Bishop’s Constructivism;58
5;Selmer Bringsjord, Konstantine Arkoudas¤On the Provability, Veracity, and AI-Relevance of the Church–Turing Thesis;66
6;Carol E. Cleland¤The Church–Turing Thesis. A Last Vestige of a Failed Mathematical Program;119
7;B. Jack Copeland¤Turing’s Thesis;147
8;Hartmut Fitz¤Church’s Thesis and Physical Computation;175
9;Janet Folina¤Church’s Thesis and the Variety of Mathematical Justifications;220
10;Andrew Hodges¤Did Church and Turing Have a Thesis about Machines?;242
11;Leon Horsten¤Formalizing Church’s Thesis;253
12;Stanis aw Krajewski¤Remarks on Church’s Thesis and Gödel’s
Theorem;269
13;Charles McCarty¤Thesis and Variations;281
14;Elliott Mendelson¤On the Impossibility of Proving the “Hard-Half” of Church’s Thesis;304
15;Roman Murawski, Jan Wolenski¤The Status of Church’s Thesis;310
16;Jerzy Mycka¤Analog Computation and Church’s Thesis;331
17;Piergiorgio Odifreddi¤Kreisel’s Church;353
18;Adam Olszewski¤Church’s Thesis as Formulated by Church — An Interpretation;383
19;Oron Shagrir¤Gö
del on Turing on Computability;393
20;Stewart Shapiro¤Computability, Proof, and Open-Texture;420
21;Wilfried Sieg¤Step by Recursive Step: Church’s Analysis of Effective Calculability;456
22;Karl Svozil¤Physics and Metaphysics Look at Computation;491
23;David Turner¤Church’s Thesis and Functional Programming;518
24;Index;545