Buch, Englisch, 444 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 984 g
Buch, Englisch, 444 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 984 g
Reihe: Chapman & Hall/CRC Computational Science
ISBN: 978-1-032-31465-5
Verlag: CRC Press
Despite the field’s growing potential, there exists numerous myths and misconceptions surrounding Autonomous Experimentation. Combining insights from theorists, machine-learning engineers and applied scientists, this book aims to lay the foundation for future research and widespread adoption within the scientific community.
This book is particularly useful for members of the scientific community looking to improve their research methods but also contains additional insights for students and industry professionals interested in the future of the field.
Zielgruppe
Academic, General, Professional Practice & Development, Professional Reference, and Professional Training
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Diskrete Mathematik, Kombinatorik
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computersimulation & Modelle, 3-D Graphik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Wirtschaftswissenschaften Volkswirtschaftslehre Wirtschaftssysteme, Wirtschaftsstrukturen
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Software Engineering
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Forschungsmethodik, Wissenschaftliche Ausstattung
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik EDV | Informatik Technische Informatik
- Mathematik | Informatik EDV | Informatik Informatik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
Weitere Infos & Material
Preface
Contributors
Chapter 1 Autonomous Experimentation in Practice
Kevin G. Yager
Chapter 2 A Friendly Mathematical Perspective on Autonomous Experimentation
Marcus M. Noack
Chapter 3 A Perspective on Machine Learning for Autonomous Experimentation
Joshua Schrier and Alexander J. Norquist
Chapter 4 Gaussian Processes
Marcus M. Noack
Chapter 5 Uncertainty Quantification
Mark D. Risser and Marcus M. Noack
Chapter 6 Surrogate Model Guided Optimization
Juliane Mueller
Chapter 7 Artificial Neural Networks
Daniela Ushizima
Chapter 8 NSLS2
Philip M. Maffettone, Daniel B. Allan, Andi Barbour, Thomas A. Caswell, Dmitri Gavrilov, Marcus D. Handwell, Thomas Morris, Daniel Olds, Maksim Rakitin, Stuart I. Campbell and Bruce Ravel
Chapter 9 Reinforcement Learning
Yixuan Sun, Krishnan Raghavan and Prasanna Balaprakash
Chapter 10 Applications of Autonomous Methods to Synchrotron X-ray Scattering and Diffraction Experiments
Masafumi Fukuto, Yu-Chen Wiegart, Marcus M. Noack and Kevin G. Yager
Chapter 11 Autonomous Infrared Absorption Spectroscopy
Hoi-Ying Holman, Steven Lee, Liang Chen, Petrus H. Zwart and Marcus M. Noack
Chapter 12 Autonomous Hyperspectral Scanning Tunneling Spectroscopy
Antonio Rossi, Darian Smalley, Masahiro Ishigami, Eli Rotenberg, Alexander Weber-Barigoni and John C. Thomas
Chapter 13 Autonomous Control and Analyses of Fabricated Ecosystems
Trent R. Northern, Peter Andeer, Marcus M. Noack, Ptrus H. Zwart and Daniela Ushizima
Chapter 14 Autonomous Neutron Experiments
Martin Boehm, David E. Perryman, Alessio De Francesco, Luisa Scaccia, Alessandro Cunsolo, Tobias Weber, Yannick LeGoc and Paolo Mutti
Chapter 15 Material Discovery in Poorly Explored High-Dimensional Targeted Spaces
Suchismita Sarker and Apurva Mehta
Chapter 16 Autonomous Optical Microscopy for Exploring Nucleation and Growth of DNA Crystals
Aaron N. Michelson
Chapter 17 Constratined Autonomous Modelin of Metal-Mineral Adsorption
Elliot Chang, Linda Beverly and Haruko Wainwright
Chapter 18 Physics-In-The-Loop
Aaron Gilad Kusne
Chapter 19 A Closed Loop of Diverse Disciplines
Marucs M. Noack and Kevin G. Yager
Chapter 20 Analysis of Raw Data
Marcus M. Noack and Kevin G. Yager
Chapter 21 Autonomous Intelligent Decision Making
Marcus M. Noack and Kevin G. Yager
Chapter 22 Data Infrastructure
Marcus M. Noack and Kevin G. Yager
Bibliography
Index