Müller / Shikhman | Mathematical Foundations of Big Data Analytics | Buch | 978-3-662-62520-0 | sack.de

Buch, Englisch, 273 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 488 g

Müller / Shikhman

Mathematical Foundations of Big Data Analytics

Buch, Englisch, 273 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 488 g

ISBN: 978-3-662-62520-0
Verlag: Springer


In this textbook, basic mathematical models used in Big Data Analytics are presented and application-oriented references to relevant practical issues are made. Necessary mathematical tools are examined and applied to current problems of data analysis, such as brand loyalty, portfolio selection, credit investigation, quality control, product clustering, asset pricing etc. – mainly in an economic context. In addition, we discuss interdisciplinary applications to biology, linguistics, sociology, electrical engineering, computer science and artificial intelligence. For the models, we make use of a wide range of mathematics – from basic disciplines of numerical linear algebra, statistics and optimization to more specialized game, graph and even complexity theories. By doing so, we cover all relevant techniques commonly used in Big Data Analytics.Each chapter starts with a concrete practical problem whose primary aim is to motivate the study of a particular Big Data Analytics technique. Next, mathematical results follow – including important definitions, auxiliary statements and conclusions arising. Case-studies help to deepen the acquired knowledge by applying it in an interdisciplinary context. Exercises serve to improve understanding of the underlying theory. Complete solutions for exercises can be consulted by the interested reader at the end of the textbook; for some which have to be solved numerically, we provide descriptions of algorithms in Python code as supplementary material.This textbook has been recommended and developed for university courses in Germany, Austria and Switzerland.
Müller / Shikhman Mathematical Foundations of Big Data Analytics jetzt bestellen!

Zielgruppe


Upper undergraduate

Weitere Infos & Material


Preface.- 1 Ranking.- 2 Online Learning.- 3 Recommendation Systems.- 4 Classification.- 5 Clustering.- 6 Linear Regression.- 7 Sparse Recovery.- 8 Neural Networks.- 9 Decision Trees.- 10 Solutions.


Vladimir Shikhman is a professor of Economathematics at Chemnitz University of Technology.David Müller is one of his doctoral students.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.