Buch, Englisch, 86 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1591 g
Reihe: Springer Theses
Buch, Englisch, 86 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1591 g
Reihe: Springer Theses
ISBN: 978-3-642-44673-3
Verlag: Springer
This thesis presents the theory of three key elements of optical spectroscopy of the electronic excitations in bilayer graphene: angle-resolved photoemission spectroscopy (ARPES), visible range Raman spectroscopy, and far-infrared (FIR) magneto-spectroscopy. Bilayer graphene (BLG) is an atomic two-dimensional crystal consisting of two honeycomb monolayers of carbon, arranged according to Bernal stacking. The unperturbed BLG has a unique band structure, which features chiral states of electrons with a characteristic Berry phase of 2$\pi$, and it has versatile properties which can be controlled by an externally applied transverse electric field and strain. It is shown in this work how ARPES of BLG can be used to obtain direct information about the chirality of electron states in the crystal. The author goes on to describe the influence of the interlayer asymmetry, which opens a gap in BLG, on ARPES and on FIR spectra in a strong magnetic field. Finally, he presents a comprehensive theory of inelastic Raman scattering resulting in the electron-hole excitations in bilayer graphene, at zero and quantizing magnetic fields. This predicts their polarization properties and peculiar selection rules in terms of the inter-Landau-level transitions.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Thermodynamik Oberflächen- und Grenzflächenphysik, Dünne Schichten
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
- Naturwissenschaften Physik Elektromagnetismus Mikroskopie, Spektroskopie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Biomaterialien, Nanomaterialien, Kohlenstoff
Weitere Infos & Material
The Tight-Binding Approach and the Resulting Electronic Structure.- Angle-Resolved Photoemission Spectroscopy.- Magneto-Optical Spectroscopy.- Electronic Raman Spectroscopy.