Mitter | Methoden zur Analyse von Zeitverläufen | Buch | 978-3-519-00122-5 | sack.de

Buch, Deutsch, Band 122, 208 Seiten, Paperback, Format (B × H): 127 mm x 203 mm, Gewicht: 233 g

Reihe: Teubner Studienskripten zur Soziologie

Mitter

Methoden zur Analyse von Zeitverläufen

Anwendungen stochastischer Prozesse bei der Untersuchung von Ereignisdaten

Buch, Deutsch, Band 122, 208 Seiten, Paperback, Format (B × H): 127 mm x 203 mm, Gewicht: 233 g

Reihe: Teubner Studienskripten zur Soziologie

ISBN: 978-3-519-00122-5
Verlag: Vieweg+Teubner Verlag


Aus dem Inhalt: Datenanalyse mit stochastischen Modellen / Soziale Karrieren / Grundlegende Konzepte stochastischer Modelle / Nichtparametrische Verfahren / Semiparametrische Verfahren (Cox-Regression) / Parametrische Verfahren / Beispiele und Analysen mit dem Programm RATE
Mitter Methoden zur Analyse von Zeitverläufen jetzt bestellen!

Zielgruppe


Upper undergraduate

Weitere Infos & Material


1. Einleitung: Datenanalyse mit stochastischen Modellen.- 1.1. Daten und Modell.- 1.2. Beispiele und Fragestellungen.- 1.3. Datenarten und Datenstruktur.- 1.4. Einige Vorteile der Datenanalyse mit stochastischen Modellen.- 2. Grundlegende Konzepte stochastischer Modelle.- 2.1. Arten stochastischer Prozesse.- 2.2. Das Zwei-Zustands-Modell mit absorbierendem Zielzustand.- 2.3. Mehr-Zustands-Modelle.- 2.4. Maximum-Likelihood-Schätzung der Übergangsrate.- 3. Nicht-parametrische Verfahren.- 3.1. Explorative Datenanalyse.- 3.2. Nicht-parametrische Schätzverfahren bei gruppierten Zeitbereichs-Daten: Life-Table-Schätzer.- 3.3. Nicht-parametrische Schätzverfahren bei Individualdaten mit exakter Ankunftszeit: Product-Limit-Schätzer.- 3.4. Nicht-parametrische Verfahren für den Vergleich von Subgruppen.- 4. Semi-parametrische Verfahren.- 4.1. Das Proportional-Hazards-Modell von COX.- 4.2. Die Partial-Likelihood-Methode von COX.- 4.3. Das geschichtete Cox-Modell und die Überprüfung der Proportionalitätsannahme.- 4.4. Signifikanztests und Stepwise-Regression.- 4.5. Anwendungsbeispiel Arbeitslosigkeit mit dem Programm BMDP.- 5. Parametrische Verfahren.- 5.1. Das log-lineare Basismodell.- 5.2. Parametrische Modelle der Zeitabhängigkeit.- 5.3. Kovariateneffekte und Zeitabhängigkeit.- 5.4. Mehr-Zustands-Modelle.- 6. Ausblick.- 1. Notation und Definition der wichtigsten Terme.- 2. Ableitung der Überlebensfunktion und einiger weiterer Beziehungen beim Zwei-Zustands-Modell mit absorbierendem Zielzustand.- 3. Ableitung der Maximum-Likelihood-Schätzer bei qualitativen Kovariaten.- 4. Die Ableitung der Differentialgleichungen für die Zustandswahrscheinlichkeiten bei Multi-State-Modellen.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.