Buch, Englisch, Band 2169, 366 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 5737 g
Reihe: Lecture Notes in Mathematics
Israel Seminar (GAFA) 2014-2016
Buch, Englisch, Band 2169, 366 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 5737 g
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-319-45281-4
Verlag: Springer International Publishing
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Alesker, S.: On repeated sequential closures of constructible functions in valuations.- Ben-Efraim L., Milman, V., Segal, A.: Orbit point of view on some results of asymp-totic theory; Orbit type and cotype.- Bobkov, S. G., Nayar, P., Tetali, P.: Concentration Properties of Restricted Measures with Applications to Non-Lipschitz Functions.- Bourgain, J.:On random walks in large compact Lie groups.- Bourgain, J.: On a problem of Farrell and Vershynin in random matrix theory.- Colesanti, A., Lombardi, N.: Valutations on the space of quasi-concave functions.- Dafnis, N., Paouris, G.: An inequality for moments of log-concave functions on Gaus-sian random vectors.- Friedland, O., Yomdin, Y.:(s; p)-valent functions.- Gluskin, E. D., Ostrover, Y.: A remark on projections of the rotated cube to complex lines.- Guedon, O., Hinrichs, A., Litvak, A. E., Prochno, J.: On the expectation of operatornorms of random matrices.- Haviv, I., Regev, O.: The Restricted Isometry Property of Subsampled Fourier Ma-trices.- Huang, H., Wei, F.: Upper bound for the Dvoretzky dimension in Milman-Schechtman theorem.- Klartag, B.: Super-Gaussian directions of random vectors.- Koldobsky, A., Pajor, A.: A remark on measures of sections of Lp-balls.- Kolesnikov, A. V., Milman, E.: Sharp Poincare-type inequality for the Gaussian mea-sure on the boundary of convex sets.- Konig, H., Milman, V.: Rigidity of the chain rule and nearly submultiplicative functions.- Lata la, R., Matlak, D.: Royen's proof of the Gaussian correlation inequality.- Liaw, C., Mehrabian, A., Plan, Y., Vershynin, R.: A simple tool for bounding the deviation of random matrices on geometric sets.- Mendelson, S.: On multiplier processes under weak moment assumptions.- Milman, V., Rotem, L.: Characterizing the radial sum for star bodies.- Oleskiewicz, K.: On mimicking Rademacher sums in tail spaces.- Rossi, A., Salani, P.: Stability for Borell-Brascamp-Lieb inequalities.pan>