Meullenet / Xiong / Findlay | Multivariate and Probabilistic Analyses of Sensory Science Problems | E-Book | sack.de
E-Book

E-Book, Englisch, 256 Seiten, E-Book

Reihe: Institute of Food Technologists Series

Meullenet / Xiong / Findlay Multivariate and Probabilistic Analyses of Sensory Science Problems


1. Auflage 2008
ISBN: 978-0-470-27631-0
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 256 Seiten, E-Book

Reihe: Institute of Food Technologists Series

ISBN: 978-0-470-27631-0
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Sensory scientists are often faced with making business decisions based on the results of complex sensory tests involving a multitude of variables. Multivariate and Probabilistic Analyses of Sensory Science Problems explains the multivariate and probabilistic methods available to sensory scientists involved in product development or maintenance. The techniques discussed address sensory problems such as panel performance, product profiling, and exploration of consumer data, including segmentation and identifying drivers of liking.
Applied in approach and written for non-statisticians, the text is aimed at sensory scientists who deal mostly with descriptive analysis and consumer studies. Multivariate and Probabilistic Analyses of Sensory Science Problems offers simple, easy-to-understand explanations of difficult statistical concepts and provides an extensive list of case studies with step-by-step instructions for performing analyses and interpreting the results. Coverage includes a refresher on basic multivariate statistical concepts; use of common data sets throughout the text; summary tables presenting the pros and cons of specific methods and the conclusions that may be drawn from using various methods; and sample program codes to perform the analyses and sample outputs.
As the latest member of the IFT Press series, Multivariate and Probabilistic Analyses of Sensory Science Problems will be welcomed by sensory scientists in the food industry and other industries using similar testing methodologies, as well as by faculty teaching advanced sensory courses, and professionals conducting and participating in workshops addressing multivariate analysis of sensory and consumer data.

Meullenet / Xiong / Findlay Multivariate and Probabilistic Analyses of Sensory Science Problems jetzt bestellen!

Weitere Infos & Material


Introduction, 3
Chapter 1. A Description of Sample Data Sets Used in Further Chapters, 9
1.1. A Description of Example Data Sets, 9
References, 25
Chapter 2. Panelist and Panel Performance: A Multivariate Experience, 27
2.1. The Multivariate Nature of Sensory Evaluation, 27
2.2. Univariate Approaches to Panelist Assessment, 29
2.3. Multivariate Techniques for Panelist Performance, 32
2.4. Panel Evaluation through Multivariate Techniques, 43
2.5. Conclusions, 46
References, 47
Chapter 3. A Nontechnical Description of Preference Mapping, 49
3.1. Introduction, 49
3.2. Internal Preference Mapping, 49
3.3. External Preference Mapping (PREFMAP), 58
3.4. Conclusions, 66
References, 67
Chapter 4. Deterministic Extensions to Preference Mapping Techniques, 69
4.1. Introduction, 69
4.2. Application and Models Available, 69
4.3. Conclusions, 89
References, 94
Chapter 5. Multidimensional Scaling and Unfolding and the Application of Probabilistic Unfolding to Model Preference Data, 95
5.1. Introduction, 95
5.2. Multidimensional Scaling (MDS) and Unfolding, 96
5.3. Probabilistic Approach to Unfolding and Identifying the Drivers of Liking, 98
5.4. Examples, 100
References, 109
Chapter 6. Consumer Segmentation Techniques, 111
6.1. Introduction, 111
6.2. Methods Available, 111
6.3. Segmentation Methods Using Hierarchical Cluster Analysis, 113
References, 126
Chapter 7. Ordinal Logistic Regression Models in Consumer Research, 129
7.1. Introduction, 129
7.2. Limitations of Ordinary Least Square Regression, 129
7.3. Odds, Odds Ratio, and Logit, 130
7.4. Binary Logistic Regression, 133
7.5. Ordinal Logistic Regression Models, 144
7.6. Proportional Odds Model (POM), 144
7.7. Conclusions, 160
References, 160
Chapter 8. Risk Assessment in Sensory and Consumer Science, 163
8.1. Introduction, 163
8.2. Concepts of Quantitative Risk Assessment, 164
8.3. A Case Study: Cheese Sticks Appetizers, 166
8.4. Conclusions, 176
References, 176
Chapter 9. Application of MARS to Preference Mapping, 179
9.1. Introduction, 179
9.2. MARS Basics, 179
9.3. Setting Control Parameters and Refining Models, 187
9.4. Example of Application of MARS, 188
9.5. A Comparison with PLS Regression, 201
References, 205
Chapter 10. Analysis of Just About Right Data, 207
10.1. Introduction, 207
10.2. Basics of Penalty Analysis, 208
10.3. Boot Strapping Penalty Analysis, 210
10.4. Use of MARS to Model JAR Data, 212
10.5. A Proportional Odds/Hazards Approach to Diagnostic Data Analysis, 215
10.6 Use of Dummy Variables to Model JAR Data, 220
References, 233
Index, 237


Jean-François Meullenet, Ph.D., is associate professor of Sensory Science in the Department of Food Science at the University of Arkansas, Fayetteville, AR. Dr. Meullenet conducts research in the area of sensory science and his expertise encompasses sensory and consumer science, rheology and modeling of food perception. Rui Xiong, Ph.D., is a research scientist with the Consumer Science Insights, Unilever Home & Personal Care, Trumbull, CT, USA. Christopher J. Findlay, Ph.D., is president of Compusense, Inc., Guelph, Ontario, Canada. He is associate editor for sensory evaluation for Food Research International.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.