Low | Advances in Ceramic Matrix Composites | E-Book | sack.de
E-Book

Low Advances in Ceramic Matrix Composites


1. Auflage 2014
ISBN: 978-0-85709-882-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 734 Seiten

Reihe: Woodhead Publishing Series in Composites Science and Engineering

ISBN: 978-0-85709-882-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Ceramic matrix composites (CMCs) have proven to be useful for a wide range of applications because of properties such as their light weight, toughness and temperature resistance. Advances in ceramic matrix composites summarises key advances and types of processing of CMCs.After an introductory chapter, the first part of the book reviews types and processing of CMCs, covering processing, properties and applications. Chapters discuss nanoceramic matric composites, silicon carbide-containing alumina nanocomposites and advances in manufacture by various infiltration techniques including heat treatments and spark plasma sintering. The second part of the book is dedicated to understanding the properties of CMCs with chapters on Finite Element Analysis, tribology and wear and self-healing CMCs. The final part of the book examines the applications of CMCs, including those in the structural engineering, nuclear and fusion energy, turbine, metal cutting and microelectronics industries.Advances in ceramic matrix composites is an essential text for researchers and engineers in the field of CMCs and industries such as aerospace and automotive engineering. - Reviews types and processing of CMCs, covering processing, properties and applications

Low Advances in Ceramic Matrix Composites jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Cover
;1
2;Advances in ceramic matrix composites
;4
3;Copyright
;5
4;Contents;6
5;Contributor contact details;16
6;Woodhead Publishing Series in Composites Science and Engineering;22
7;Advances in ceramic matrix composites: an introduction;26
7.1;1.1 The importance of ceramic matrix composites;26
7.2;1.2 Novel material systems;27
7.3;1.3 Emerging processing techniques;28
7.4;1.4 References;30
8;Types and processing;32
8.1;2 Processing, properties and applications of ceramic matrix composites, SiCf/SiC: an overview
;34
8.1.1;2.1 Introduction;34
8.1.2;2.2 Novel interphase materials and new fabrication methods for traditional interphase materials;36
8.1.3;2.3 Novel matrix manufacturing processes;40
8.1.4;2.4 Nanoreinforcement;41
8.1.5;2.5 Dielectric properties and microwave-absorbing applications;44
8.1.6;2.6 Conclusion and future trends;46
8.1.7;2.7 References;47
8.2;3 Nanoceramic matrix composites: types, processing and applications
;52
8.2.1;3.1 Introduction;52
8.2.2;3.2 Nanostructured composite materials;53
8.2.3;3.3 Bulk ceramic nanocomposites;55
8.2.4;3.4 Nanoceramic composite coatings;62
8.2.5;3.5 Conclusion;65
8.2.6;3.6 References;65
8.3;4 Silicon carbidecontaining alumina nanocomposites: processing and properties
;68
8.3.1;4.1 Introduction: current and new manufacturing methods;68
8.3.2;4.2 Silicon carbide-containing alumina nanocomposites prepared by the hybrid technique;72
8.3.3;4.3 Optimising process parameters;74
8.3.4;4.4 Mechanical properties and wear resistance;93
8.3.5;4.5 Conclusion;98
8.3.6;4.6 Acknowledgements;99
8.3.7;4.7 References;100
8.4;5 Advances in the manufacture of ceramic matrix composites using infiltration techniques
;104
8.4.1;5.1 Introduction;104
8.4.2;5.2 Classification of infiltration techniques
;105
8.4.3;5.3 Reinforcing fibers
;106
8.4.4;5.4 Interphases;108
8.4.5;5.5 Polymer infiltration and pyrolysis (PIP)
;110
8.4.6;5.6 Chemical vapor infiltration (CVI)
;113
8.4.7;5.7 Reactive melt infiltration (RMI)
;116
8.4.8;5.8 Slurry infiltration
;123
8.4.9;5.9 Solgel infiltration
;125
8.4.10;5.10 Combined infiltration methods
;127
8.4.11;5.11 Future trends;129
8.4.12;5.12 References;130
8.5;6 Manufacture of graded ceramic matrix composites using infiltration techniques
;134
8.5.1;6.1 Introduction;134
8.5.2;6.2 Processing and characterisation techniques;135
8.5.3;6.3 Microstructure and physical, thermal and mechanical properties;142
8.5.4;6.4 Conclusion;161
8.5.5;6.5 Future trends;163
8.5.6;6.6 Acknowledgments;164
8.5.7;6.7 References;164
8.6;7 Heat treatment for strengthening silicon carbide ceramic matrix composites
;166
8.6.1;7.1 Introduction;166
8.6.2;7.2 SiC/TiB2 particulate composites
;167
8.6.3;7.3 Sintering SiC/TiB2 composites
;170
8.6.4;7.4 Fracture toughness;171
8.6.5;7.5 Fracture strength;180
8.6.6;7.6 Conclusion;186
8.6.7;7.7 References;186
8.7;Developments in hot pressing (HP) and hot isostatic pressing (HIP) of ceramic matrix composites;189
8.7.1;8.1 Introduction;189
8.7.2;8.2 Direct hot pressing;191
8.7.3;8.3 Hot isostatic pressing;202
8.7.4;8.4 Future trends;211
8.7.5;8.5 Conclusion;212
8.7.6;8.6 Acknowledgements;213
8.7.7;8.7 References;213
8.8;9 Hot pressing of tungsten carbide ceramic matrix composites
;215
8.8.1;9.1 Introduction;215
8.8.2;9.2 Powder characterization;217
8.8.3;9.3 Thermal analysis and phase transformation during hot pressing of WC/Al2O3 composites
;220
8.8.4;9.4 Effects of Al;222
8.8.5;9.4 Effects of Al2 O3 content on the microstructure and mechanical properties of WC/Al2O3 composites
;222
8.8.6;9.5 Hot pressing of WC/40 vol% Al2O3 composites
;229
8.8.7;9.6 Future trends;239
8.8.8;9.7 Conclusion;240
8.8.9;9.8 References;241
8.9;10 Strengthening alumina ceramic matrix nanocomposites using spark plasma sintering
;243
8.9.1;10.1 Introduction;243
8.9.2;10.2 Synthesis of Al;244
8.9.3;10.2 Synthesis of Al2O3–Cr2O3/Cr3C2 nanocomposites:chemical vapor deposition (CVD) and spark plasma sintering (SPS)
;244
8.9.4;10.3 Analyzing the mechanical properties of ceramic nanocomposites;245
8.9.5;10.4 Processing and characterization of Al2O3-Cr2O3/Cr carbide nanocomposites
;247
8.9.6;10.5 Properties of Al2O3-Cr2O3/Cr carbide nanocomposites
;249
8.9.7;10.6 Conclusions;257
8.9.8;10.7 Acknowledgments;257
8.9.9;10.8 References;257
8.10;11 Cold ceramics: low-temperature processing of ceramics for applications in composites
;260
8.10.1;11.1 Introduction;260
8.10.2;11.2 Understanding the heterogeneous structure of ceramic raw materials;261
8.10.3;11.3 Ceramic products with low energy content: dense aluminous cements;268
8.10.4;11.4 Ceramic products with low energy content: textured materials;274
8.10.5;11.5 Ceramic products with low energy content: porous materials;277
8.10.6;11.6 Ceramic products with low energy content: composite materials;279
8.10.7;11.7 Conclusion;284
8.10.8;11.8 Acknowledgments;284
8.10.9;11.9 References;285
8.10.10;11.10 Appendix: basic concepts in rheology;288
9;Part II Properties
;290
9.1;12 Understanding interfaces and mechanical properties of ceramic matrix composites
;292
9.1.1;12.1 Introduction;292
9.1.2;12.2 Interfaces in CMCs;294
9.1.3;12.3 Toughening and strengthening mechanisms in CMCs;299
9.1.4;12.4 Engineering design of interfaces for high strength and toughness;305
9.1.5;12.5 Conclusion;308
9.1.6;12.6 Acknowledgments;309
9.1.7;12.7 References;309
9.2;13 Using finite element analysis (FEA) to understand the mechanical properties of ceramic matrix composites
;311
9.2.1;13.1 Introduction;311
9.2.2;13.2 The use of fi nite element analysis (FEA) to study ceramic matrix composites (CMCs)
;317
9.2.3;13.3 Conclusion;333
9.2.4;13.4 References;333
9.3;14 Understanding the wear and tribological properties of ceramic matrix composites
;337
9.3.1;14.1 Introduction;337
9.3.2;14.2 Friction;338
9.3.3;14.3 Lubrication;339
9.3.4;14.4 Wear;341
9.3.5;14.5 Friction and wear of ceramics;345
9.3.6;14.6 Tribological properties of ceramic matrix composites (CMCs);349
9.3.7;14.7 Future trends;361
9.3.8;14.8 Sources of further information and advice;362
9.3.9;14.9 References;362
9.4;15 Understanding and improving the thermal stability of layered ternary carbides in ceramic matrix composites
;365
9.4.1;15.1 Introduction;365
9.4.2;15.2 High-temperature stability of Ti3SiC2
;366
9.4.3;15.3 High-temperature stability of Ti3AlC2 and Ti2AlC
;367
9.4.4;15.4 Testing the thermal stability of layered ternary carbides;369
9.4.5;15.5 Hightemperature stability of particular layered ternary carbides;372
9.4.6;15.6 Conclusion;390
9.4.7;15.7 Future trends;391
9.4.8;15.8 Acknowledgments;391
9.4.9;15.9 References;392
9.5;16 Advances in selfhealing ceramic matrix composites
;394
9.5.1;16.1 Introduction;394
9.5.2;16.2 Understanding oxidation behaviour;395
9.5.3;16.3 Understanding selfhealing;398
9.5.4;16.4 Issues in processing selfhealing ceramic matrix composites;399
9.5.5;16.5 The design of the interphase and matrix architectures;400
9.5.6;16.6 Assessing the properties of self-healing ceramic matrix composites;405
9.5.7;16.7 Testing the oxidation of self-healing matrix composites;411
9.5.8;16.8 Self-healing silicate coatings;413
9.5.9;16.9 Modelling self-healing;414
9.5.10;16.10 Applications;417
9.5.11;16.11 Trends in the development of self-healing composite materials;419
9.5.12;16.12 Conclusion;422
9.5.13;16.13 References;423
9.6;17 Self-crack-healing behavior in ceramic matrix composites
;435
9.6.1;17.1 Introduction;435
9.6.2;17.2 Material design for self-crack-healing;439
9.6.3;17.3 Influence of oxygen partial pressure on self-crack-healing;448
9.6.4;17.4 Influence of oxygen partial pressure on self-crack-healing under stress;456
9.6.5;17.5 Conclusion;462
9.6.6;17.6 References;464
10;Part III Applications
;468
10.1;Geopolymer (aluminosilicate) composites: synthesis, properties and applications;470
10.1.1;18.1 Introduction;470
10.1.2;18.2 Geopolymer matrix composite materials;471
10.1.3;18.3 Processing geopolymer composites;475
10.1.4;18.4 Properties of geopolymers and geopolymer composites;477
10.1.5;18.5 Applications;488
10.1.6;18.6 Future trends;489
10.1.7;18.7 References;491
10.2;19 Fibrereinforced geopolymer composites (FRGCs) for structural applications
;496
10.2.1;19.1 Introduction;496
10.2.2;19.2 Source materials used for geopolymers;497
10.2.3;19.3 Alkaline solutions used for geopolymers;498
10.2.4;19.4 Manufacturing FRGCs;498
10.2.5;19.5 Mechanical properties of FRGCs;499
10.2.6;19.6 Durability of FRGCs;511
10.2.7;19.7 Future trends;517
10.2.8;19.8 Conclusion;518
10.2.9;19.9 References;519
10.3;20 Ceramic matrix composites in fission and fusion energy applications
;521
10.3.1;20.1 Introduction;521
10.3.2;20.2 Effect of radiation on ceramic matrix composites;522
10.3.3;20.3 Small specimen test technology and constitutive modelling;527
10.3.4;20.4 Fusion energy applications;529
10.3.5;20.5 Fission energy applications;536
10.3.6;20.6 Conclusion and future trends;543
10.3.7;20.7 Sources of further information and advice;543
10.3.8;20.8 References;544
10.4;21 Ceramic matrix composite thermal barrier coatings for turbine parts
;549
10.4.1;21.1 Introduction;549
10.4.2;21.2 Selecting materials for thermal barrier coatings (TBCs);550
10.4.3;21.3 Materials for TBCs;550
10.4.4;21.4 Conclusion;557
10.4.5;21.5 Future trends;557
10.4.6;21.6 References;558
10.5;22 The use of ceramic matrix composites for metal cutting applications
;562
10.5.1;22.1 Introduction;562
10.5.2;22.2 Classification of ceramic matrix composites (CMCs) for metal cutting applications
;563
10.5.3;22.3 Strengthening and toughening of ceramic tool materials;574
10.5.4;22.4 Design and fabrication of graded ceramic tools;581
10.5.5;22.5 Application of ceramic inserts in the machining of hard-to-cut materials;583
10.5.6;22.6 Future trends;591
10.5.7;22.7 Acknowledgements;592
10.5.8;22.8 References;592
10.6;23 Cubic boron nitride-containing ceramic matrix composites for cutting tools ;595
10.6.1;23.1 Introduction;595
10.6.2;23.2 Densification and relative density;597
10.6.3;23.3 Microstructures;599
10.6.4;23.4 Mechanical properties;602
10.6.5;23.5 Phase transformation of cBN to hBN;604
10.6.6;23.6 Conclusion and future trends;607
10.6.7;23.7 References;608
10.7;24 Multilayer glass–ceramic composites for microelectronics: processing and properties
;612
10.7.1;24.1 Introduction;612
10.7.2;24.2 Testing multilayer glass–ceramic composites;614
10.7.3;24.3 Key challenges in preparing multilayer glass–ceramic composites;616
10.7.4;24.4 Evaluation of fabricated glass–ceramic substrates;621
10.7.5;24.5 Conclusion;630
10.7.6;24.6 Acknowledgments;631
10.7.7;24.7 References;631
10.8;25 Fabricating functionally graded ceramic microcomponents using soft lithography
;636
10.8.1;25.1 Introduction;636
10.8.2;25.2 Fabricating multilayered alumina/zirconia FGMs;638
10.8.3;25.3 Properties of multilayered alumina/zirconia FGMs;642
10.8.4;25.4 Conclusion;647
10.8.5;25.5 References;647
10.9;26 Ceramics in restorative dentistry
;649
10.9.1;26.1 Introduction;649
10.9.2;26.2 Development of ceramics for restorative dentistry;650
10.9.3;26.3 Dental bioceramics;652
10.9.4;26.4 Dental CAD/CAM systems;660
10.9.5;26.5 Clinical adjustments;666
10.9.6;26.6 Surface integrity and reliability of ceramic restorations;670
10.9.7;26.7 Conclusion;675
10.9.8;26.8 Acknowledgements;676
10.9.9;26.9 References;676
10.10;27 Resin-based ceramic matrix composite materials in dentistry
;681
10.10.1;27.1 Introduction;681
10.10.2;27.2 The development of dental composites;681
10.10.3;27.3 Composition of dental composites;685
10.10.4;27.4 Classification of dental composites
;688
10.10.5;27.5 Limitations of dental composites;688
10.10.6;27.6 The development of nanocomposites;690
10.10.7;27.7 Indirect dental composites;691
10.10.8;27.8 Resin-based composite cements;691
10.10.9;27.9 Environmental factors influencing dental composites
;692
10.10.10;27.10 Future trends;696
10.10.11;27.11 References;696
10.11;28 The use of nano-boron nitride reinforcements in composites for packaging applications
;703
10.11.1;28.1 Introduction;703
10.11.2;28.2 Preparation and characterization of chitosan/ boron nitride (BN) nano-biocomposites;705
10.11.3;28.3 Properties of chitosan/BN nano-biocomposites;706
10.11.4;28.4 Conclusion;713
10.11.5;28.5 References;713
11;Index;716



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.