Loebenstein / Katis | Control of Plant Virus Diseases | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 91, 332 Seiten

Reihe: Advances in Virus Research

Loebenstein / Katis Control of Plant Virus Diseases

Vegetatively-Propagated Crops
1. Auflage 2015
ISBN: 978-0-12-802763-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Vegetatively-Propagated Crops

E-Book, Englisch, Band Volume 91, 332 Seiten

Reihe: Advances in Virus Research

ISBN: 978-0-12-802763-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The first review series in virology and published since 1953, Advances in Virus Research covers a diverse range of in-depth reviews, providing a valuable overview of the field. The series of eclectic volumes are valuable resources to virologists, microbiologists, immunologists, molecular biologists, pathologists, and plant researchers. Volume 91 features articles on control of plant virus diseases. - Contributions from leading authorities - Comprehensive reviews for general and specialist use - First and longest-running review series in virology

Loebenstein / Katis Control of Plant Virus Diseases jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Control of Plant Virus Diseases: Vegetatively-Propagated Crops;4
3;Copyright;5
4;Contents;6
5;Contributors;10
6;Preface;12
6.1;Reference;12
7;Chapter One: Principles for Supplying Virus-Tested Material;14
7.1;1. Introduction;15
7.2;2. Virus Detection;16
7.3;3. Virus Elimination;19
7.3.1;3.1. Thermotherapy;19
7.3.2;3.2. Low-temperature therapy;20
7.3.3;3.3. Meristem culture in vitro;20
7.3.4;3.4. Micrografting in vitro;21
7.3.5;3.5. Chemotherapy;23
7.3.6;3.6. Cryotherapy;25
7.3.7;3.7. Combination of methods;27
7.3.7.1;3.7.1. Thermotherapy and apical meristem culture or shoot-tip grafting;27
7.3.7.2;3.7.2. Chemotherapy and tissue culture or shoot-tip grafting;28
7.3.7.3;3.7.3. Chemotherapy, thermotherapy, and meristem in vitro culture;28
7.4;4. Certification Schemes and Programs;28
7.4.1;4.1. Principles;30
7.4.2;4.2. Harmonization;31
7.4.3;4.3. Effectiveness;35
7.5;5. Prospects;36
7.6;Acknowledgments;37
7.7;References;37
8;Chapter Two: Control of Sweet Potato Virus Diseases;46
8.1;1. Introduction;47
8.2;2. The Main Viruses;48
8.2.1;2.1. Sweet potato feathery mottle virus Genus Potyvirus;48
8.2.2;2.2. Sweet potato chlorotic stunt virus Genus Crinivirus;49
8.2.3;2.3. Sweet potato mild mottle virus Genus Ipomovirus;50
8.2.4;2.4. Sweet potato latent virus Genus Potyvirus;51
8.2.5;2.5. Sweet potato leaf curl virus Genus Begomovirus;52
8.3;3. Transgenic Approaches to Control the Viruses in Sweet Potato;52
8.3.1;3.1. The orthodox approach for control;54
8.4;References;55
9;Chapter Three: Control of Pome and Stone Fruit Virus Diseases;60
9.1;1. Introduction: The Importance of Temperate Fruit Trees Worldwide;61
9.2;2. Major Viruses Affecting Temperate Fruit Trees;62
9.2.1;2.1. Family: Betaflexiviridae;63
9.2.1.1;2.1.1. Genus: Trichovirus;63
9.2.1.1.1;2.1.1.1. Apple chlorotic leaf spot virus;63
9.2.1.1.2;2.1.1.2. Cherry mottle leaf virus;64
9.2.1.2;2.1.2. Genus: Capillovirus;64
9.2.1.2.1;2.1.2.1. Apple stem grooving virus;64
9.2.1.3;2.1.3. Genus: Foveavirus;65
9.2.1.3.1;2.1.3.1. Apple stem pitting virus;65
9.2.1.4;2.1.4. Genus: Unassigned;65
9.2.1.4.1;2.1.4.1. Cherry green ring mottle virus;65
9.2.2;2.2. Family: Bromoviridae;66
9.2.2.1;2.2.1. Genus: Ilarvirus;66
9.2.2.1.1;2.2.1.1. Prunus necrotic ringspot virus;66
9.2.2.1.2;2.2.1.2. Apple mosaic virus;66
9.2.2.1.3;2.2.1.3. Prune dwarf virus;67
9.2.3;2.3. Family: Closteroviridae;68
9.2.3.1;2.3.1. Genus: Ampelovirus;68
9.2.3.1.1;2.3.1.1. Little cherry virus 1 and Little cherry virus 2 (LChV-1 and LChV-2);68
9.2.4;2.4. Family: Potyviridae;69
9.2.4.1;2.4.1. Genus: Potyvirus;69
9.2.4.1.1;2.4.1.1. Plum pox virus;69
9.3;3. Reliable and Sensitive Detection Methods;70
9.4;4. Present Control Methods;73
9.4.1;4.1. Exclusion of the pathogen(s) by crop quarantine;74
9.4.2;4.2. Exclusion of the pathogen(s) by crop certification;75
9.4.3;4.3. Control of pathogens by eradication of infected cultivars and rootstocks;77
9.4.4;4.4. Controlling viral insect vectors;77
9.4.5;4.5. Elimination of pathogen in planting material;78
9.4.6;4.6. Selection of tolerant and/or resistant crop cultivars;79
9.5;5. Transgenic Approaches to Induce Virus Resistance in Temperate Fruit Trees;80
9.6;References;85
10;Chapter Four: Cassava Virus Diseases: Biology, Epidemiology, and Management;98
10.1;1. Introduction;99
10.1.1;1.1. Cassava: the plant, its cultivation and current economic importance;99
10.1.2;1.2. Threats to cassava production;100
10.2;2. Biology and Epidemiology of Cassava Viruses;101
10.2.1;2.1. Viruses of cassava;101
10.2.1.1;2.1.1. Africa and South Asia;101
10.2.1.1.1;2.1.1.1. Introduction;101
10.2.1.1.2;2.1.1.2. Cassava mosaic geminiviruses;105
10.2.1.1.3;2.1.1.3. Cassava brown streak viruses;108
10.2.1.2;2.1.2. Latin America;109
10.2.2;2.2. Diseases caused by cassava viruses;111
10.2.2.1;2.2.1. Cassava mosaic disease;111
10.2.2.2;2.2.2. Cassava brown streak disease;112
10.2.2.3;2.2.3. Cassava frogskin disease;113
10.2.3;2.3. Vectors of cassava viruses;113
10.2.3.1;2.3.1. Cassava mosaic geminiviruses;113
10.2.3.2;2.3.2. Cassava brown streak viruses;114
10.2.3.3;2.3.3. Viruses associated with CFSD;114
10.2.4;2.4. Epidemiology of cassava viruses;115
10.2.4.1;2.4.1. Cassava mosaic geminiviruses;115
10.2.4.2;2.4.2. Cassava brown streak viruses;116
10.2.4.3;2.4.3. Latin American viruses;117
10.3;3. Management of Cassava Viruses;117
10.3.1;3.1. Management strategies for plant viruses in cassava;117
10.3.1.1;3.1.1. Recognition and monitoring;117
10.3.1.2;3.1.2. Prevention of infection;118
10.3.1.3;3.1.3. Control of infection;119
10.3.2;3.2. Diagnostics and surveillance;119
10.3.2.1;3.2.1. Cassava virus diagnostics in Africa;120
10.3.2.2;3.2.2. Cassava virus diagnostics in South Asia;121
10.3.2.3;3.2.3. Cassava virus diagnostics in Latin America;122
10.3.2.4;3.2.4. Cassava virus surveillance;122
10.3.3;3.3. Quarantine systems;123
10.3.4;3.4. Phytosanitation and clean seed;125
10.3.4.1;3.4.1. Producing virus-free planting materials;125
10.3.4.1.1;3.4.1.1. Meristem tip culture and thermotherapy;125
10.3.4.1.2;3.4.1.2. Field application of thermotherapy and hot water treatment;126
10.3.4.1.3;3.4.1.3. Field propagation of virus-free stocks of ``clean seed´´;126
10.3.4.2;3.4.2. Managing the health of cassava crops in the field;126
10.3.4.2.1;3.4.2.1. Roguing;127
10.3.4.2.2;3.4.2.2. Selection;127
10.3.4.2.3;3.4.2.3. Crop management and disposition;128
10.3.4.2.4;3.4.2.4. Intercropping;128
10.3.4.3;3.4.3. Implementing large-scale phytosanitation initiatives;129
10.3.4.3.1;3.4.3.1. Certification;129
10.3.4.3.2;3.4.3.2. Eradication;129
10.3.5;3.5. Conventional breeding for resistance;130
10.3.5.1;3.5.1. Introduction;130
10.3.5.2;3.5.2. Breeding for resistance to CMD in Africa;131
10.3.5.3;3.5.3. Breeding for resistance to CBSD in Africa;132
10.3.5.4;3.5.4. Breeding for resistance to CMD in South Asia;134
10.3.5.5;3.5.5. Breeding for resistance to CFSD in Latin America;135
10.3.5.6;3.5.6. The deployment of virus-resistant cassava varieties in Africa;135
10.3.6;3.6. Molecular breeding using next-generation methods;138
10.3.7;3.7. Transgenic approaches to strengthening host plant resistance;139
10.3.7.1;3.7.1. Introduction;139
10.3.7.2;3.7.2. Transgenic approaches to developing CMD resistance;139
10.3.7.3;3.7.3. Transgenic approaches to developing CBSD resistance;140
10.3.8;3.8. Vector control;141
10.4;4. Conclusions;142
10.5;Acknowledgments;143
10.6;References;144
11;Chapter Five: Control of Virus Diseases of Citrus;156
11.1;1. Introduction;157
11.2;2. Commonly Encountered Citrus Viruses and Graft-Transmissible Diseases;158
11.2.1;2.1. Citrus tristeza virus;158
11.2.2;2.2. Citrus psorosis virus (including citrus ringspot);159
11.2.3;2.3. Concave gum disease;160
11.2.4;2.4. Impietratura disease;161
11.2.5;2.5. Cristacortis disease;161
11.2.6;2.6. Citrus vein enation;161
11.2.7;2.7. Citrus blight disease;162
11.2.8;2.8. Citrus viroids;163
11.2.9;2.9. Citrus tatterleaf virus;165
11.2.10;2.10. Citrus leaf blotch;165
11.2.11;2.11. Measles disease;165
11.2.12;2.12. Yellow vein;166
11.2.13;2.13. Citrus leprosis;166
11.2.14;2.14. Citrus yellow mosaic;167
11.2.15;2.15. Satsuma dwarf;167
11.3;3. Other Insect-Spread Diseases Caused by Prokaryotes Which Need to be Considered in Control/Management of Citrus Viruses...;168
11.3.1;3.1. Huanglongbing;168
11.3.2;3.2. Stubborn disease;169
11.3.3;3.3. Citrus variegated chlorosis;170
11.4;4. Methods of Control of Graft-Transmissible Pathogens of Citrus;171
11.4.1;4.1. Quarantine programs;171
11.4.2;4.2. Clean Stock Programs;176
11.4.3;4.3. Certification Programs;177
11.5;5. Other Methods of Control;177
11.5.1;5.1. Pest management areas;177
11.5.2;5.2. Mild strain cross-protection;178
11.5.3;5.3. CP-mediated resistance;179
11.5.4;5.4. RNA-mediated resistance;179
11.6;References;180
12;Chapter Six: Control of Viruses Infecting Grapevine;188
12.1;1. Origin, Botany, and Economic Importance of Grapevine (Vitis vinifera L.);189
12.2;2. The Main Viruses Infecting Grapevine;189
12.2.1;2.1. Closterovirids associated with grapevine leafroll disease;190
12.2.2;2.2. Flexivirids related to the RW disease complex;195
12.2.3;2.3. Nepoviruses responsible for grapevine fanleaf degeneration;198
12.3;3. Diagnosis of Grapevine Viruses;200
12.3.1;3.1. Biological indexing;200
12.3.2;3.2. Serological assays;200
12.3.3;3.3. Molecular assays;201
12.4;4. Control;202
12.4.1;4.1. Introduction;202
12.4.2;4.2. Production and use of certified propagative material;203
12.4.2.1;4.2.1. The principles;203
12.4.2.2;4.2.2. The International Council for the Study of Virus and Virus-like Diseases of the Grapevine;205
12.4.2.3;4.2.3. Certification in non-EU countries;205
12.4.2.3.1;4.2.3.1. United States of America;205
12.4.2.3.2;4.2.3.2. Canada;206
12.4.2.3.3;4.2.3.3. Argentina and Chile;207
12.4.2.3.4;4.2.3.4. South Africa;207
12.4.2.3.5;4.2.3.5. New Zealand and Australia;208
12.4.2.4;4.2.4. Certification in the EU;208
12.4.3;4.3. Methods used for virus elimination;210
12.4.3.1;4.3.1. Thermotherapy;210
12.4.3.2;4.3.2. Meristem tip, shoot tip culture, and somatic embryogenesis;213
12.4.3.3;4.3.3. Chemotherapy;214
12.4.3.4;4.3.4. Cryotherapy;215
12.4.3.5;4.3.5. Electrotherapy;216
12.4.4;4.4. Control of virus vectors;216
12.4.4.1;4.4.1. Cultural control;217
12.4.4.1.1;4.4.1.1. Crop rotation and fallow period;217
12.4.4.1.2;4.4.1.2. Other cultural methods;217
12.4.4.2;4.4.2. Biological control of the nematode and mealybug vectors;218
12.4.4.2.1;4.4.2.1. Nematodes;218
12.4.4.2.2;4.4.2.2. Mealybugs/soft scale insects;218
12.4.4.3;4.4.3. Chemical control;219
12.4.4.3.1;4.4.3.1. Nematodes;219
12.4.4.3.2;4.4.3.2. Mealybugs/soft scales;219
12.4.5;4.5. Resistance to viruses and vectors;220
12.4.5.1;4.5.1. Resistance to viruses and their vectors in Vitis spp;220
12.4.5.2;4.5.2. Engineered resistance to viruses and their vectors;221
12.4.5.3;4.5.3. Virus-resistant transgenic grapevines and environmental safety issues;224
12.4.5.4;4.5.4. Virus-resistant transgenic grapevines and social perception;225
12.5;5. Concluding Remarks;226
12.6;Acknowledgments;228
12.7;References;228
13;Chapter Seven: Biology, Etiology, and Control of Virus Diseases of Banana and Plantain;242
13.1;1. Introduction;243
13.2;2. Major Virus Diseases of Banana and Plantain;246
13.2.1;2.1. Banana bunchy top disease;246
13.2.1.1;2.1.1. Disease discovery and biology;246
13.2.1.2;2.1.2. Symptoms and economic importance;247
13.2.1.3;2.1.3. Transmission;249
13.2.1.4;2.1.4. Geographic distribution and host range;250
13.2.1.5;2.1.5. BBTV diversity;251
13.2.1.6;2.1.6. BBTV diagnostics;253
13.2.1.7;2.1.7. Options for BBTV control;254
13.2.1.7.1;2.1.7.1. Integrated disease control by exclusion, eradication, and use of virus-free plants;254
13.2.1.7.2;2.1.7.2. Host resistance;256
13.2.1.7.3;2.1.7.3. Vector control;257
13.2.2;2.2. Banana streak disease;258
13.2.2.1;2.2.1. Disease discovery and biology;258
13.2.2.2;2.2.2. Symptoms;259
13.2.2.3;2.2.3. Transmission and geographic distribution;259
13.2.2.4;2.2.4. Virus diversity;260
13.2.2.5;2.2.5. Diagnostics;260
13.2.2.6;2.2.6. Control;263
13.2.3;2.3. Banana bract mosaic;264
13.2.3.1;2.3.1. Distribution and biology;264
13.2.3.2;2.3.2. Host range and transmission;266
13.2.3.3;2.3.3. Virus diversity;266
13.2.3.4;2.3.4. Diagnosis;267
13.2.3.5;2.3.5. Control;267
13.3;3. Minor Virus Diseases;267
13.3.1;3.1. Abaca bunchy top;267
13.3.2;3.2. Abaca mosaic;268
13.3.3;3.3. Banana mosaic;268
13.3.4;3.4. Banana mild mosaic;269
13.3.5;3.5. Banana virus X;269
13.4;4. Conclusions;270
13.5;References;271
14;Chapter Eight: Control of Virus Diseases of Berry Crops;284
14.1;1. Introduction;285
14.2;2. Virus Control During Plant Propagation;288
14.3;3. Detection;289
14.4;4. Certification Schemes;290
14.5;5. Generating and Testing G1 Plants;293
14.6;6. Virus Control in Berry Crops;296
14.7;7. Virus Control in Nurseries;297
14.8;8. BMPs, Knowing the High-Risk Viruses;312
14.9;9. Virus Control in Commercial Fields;313
14.9.1;9.1. Virus Resistance and Tolerance;314
14.9.2;9.2. Vector Resistance;315
14.9.3;9.3. High-risk Viruses and Mixed Infections;316
14.9.4;9.4. Coordinated Control Efforts;317
14.10;References;319
15;Index;324
16;Color Plate;333


Chapter Two Control of Sweet Potato Virus Diseases
Gad Loebenstein*    Department of Plant Pathology, Agricultural Research Organization, Bet Dagan, Israel
* Corresponding author: email address: gad-talma@barak.net.il Abstract
Sweet potato (Ipomoea batatas) is ranked seventh in global food crop production and is the third most important root crop after potato and cassava. Sweet potatoes are vegetative propagated from vines, root slips (sprouts), or tubers. Therefore, virus diseases can be a major constrain, reducing yields markedly, often more than 50%. The main viruses worldwide are Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV). Effects on yields by SPFMV or SPCSV alone are minor, or but in complex infection by the two or other viruses yield losses of 50%. The orthodox way of controlling viruses in vegetative propagated crops is by supplying the growers with virus-tested planting material. High-yielding plants are tested for freedom of viruses by PCR, serology, and grafting to sweet potato virus indicator plants. After this, meristem tips are taken from those plants that reacted negative. The meristems were grown into plants which were kept under insect-proof conditions and away from other sweet potato material for distribution to farmers after another cycle of reproduction. Keywords Sweet potato feathery mottle virus Sweet potato chlorotic stunt virus Sweet potato virus disease Bemisia tabaci Diagnosis of sweet potato viruses Transgenic approaches for control Virus-tested propagation material 1 Introduction
Sweet potato (Ipomoea batatas) is ranked seventh in global food crop production and is the third most important root crop after potato and cassava. They are grown on about 8.1 million hectares, yielding ca. 131 million tons, with an average yield of about 15 t/ha (FAOSTAT, 2011). They are mainly grown in developing countries, which account for over 95% of world output. The cultivated area of sweet potato in China, about 3.7 million hectares, accounted for 70% of the total area of sweet potato cultivation in the world. China produces about 80 million tons, ca. 46% of the total world production. Vietnam is the second largest producer. Sweet potato is a “poor man's crop,” with most of the production done on a small or subsistence level. Sweet potato produces more biomass and nutrients per hectare than any other food crop in the world. Thus, for example, across East Africa's semiarid, densely populated plains, thousands of villages depend on sweet potato for food security and the Japanese used it when typhoons demolished their rice fields. Sweet potato is grown for both the leaves, which are used as greens, and the tubers, for a high carbohydrate and beta-carotene source. Yields differ greatly in different areas or even fields in the same location. Thus, the average yield in African countries is about 4.7 t/ha, with yields of 9.1, 4.5, 1.9, and 2.9 t/ha in Kenya, Uganda, Sierra Leone, and Nigeria, respectively. The yields in Asia are significantly higher, averaging 20.0 t/ha. China, Japan, Korea, and Israel have the highest yields with about 22.0, 21.7, 15.6, and 33.3 t/ha, respectively. In South America, the average yield is 12.3 t/ha, with Argentina, Peru, and Uruguay in the lead with 14, 16.8, and 10.9 t/ha, respectively. For comparison, the average yield in the United States is 22.8 t/ha (FAOSTAT, 2012). These differences in yields are mainly due to variation in quality of the propagation material. Sweet potatoes are vegetative propagated from vines, root slips (sprouts), or tubers, and farmers in African and other countries often take vines for propagation from their own fields year after year. Thus, if virus diseases are present in the field they will inevitable be transmitted with the propagation material to the newly planted field, resulting in a decreased yield. Often these fields are infected with several viruses, thereby compounding the effect on yields. In China, on average, losses of over 20% due to sweet potato virus diseases (SPVDs) are observed (Gao, Gong, & Zhang, 2000), mainly due to Sweet potato feathery mottle virus (SPFMV) and Sweet potato latent virus (SPLV). The infection rate in the Shandong province reaches 5–41% (Shang et al., 1999). In countries were care is taken to provide virus-tested planting material as, among others in the United States and Israel, yields increase markedly, up to seven times and more. 2 The Main Viruses
2.1 Sweet potato feathery mottle virus Genus Potyvirus
Sweet potato feathery mottle virus Genus Potyvirus (SPFMV) is the most common sweet potato virus worldwide. Certain isolates in the United States cause much economic damage by inducing cracking or internal corkiness in some cultivars. In Africa, SPFMV causes a SPVD in a complex infection with the whitefly-transmitted Sweet potato sunken vein virus Genus Crinivirus (SPSVV) [synonym: Sweet potato chlorotic stunt Genus Crinivirus (SPCSV)]. Most sweet potato cultivars infected by SPFMV alone show only mild circular spots on their leaves or light green patterns along veins. However, when infected together with the whitefly-transmitted SPSVV stunting of the plants, feathery vein clearing, and yellowing of the plants are observed. In controlled experiments, SPFMV-infection alone did not reduce yields compared to virus-free controls, while the complex infection with SPCSV reduced yields by 50% or more SPFMV is transmitted in a nonpersistent manner by aphids, including Aphis gossypii, Myzus persicae, A. craccivora, and Lipaphis erysimi. The virus can be transmitted mechanically to various Ipomoea sp., as I. batatas, I. setosa, I. nil, I. incarnata, and I. purpurea, and Nicotiana benthamiana and Chenopodium amaranticolor (for some strains). The virus is transmitted by grafting but not by seed or pollen or by contact between plants. The virus can best be diagnosed by grafting on I. setosa, causing vein clearing or on I. incarnata and I. nil inducing systemic vein clearing, vein banding, and ringspots. SPFMV can be diagnosed by ELISA, and antisera are commercially available. However, ELISA reliably detects SPFMV only in leaves with symptoms. It is best to sample several leaves from a plant, as the virus seems to be unevenly distributed. SPFMV can also be detected together with three other sweet potato viruses by multiple one-step reverse transcription-PCR (Li et al., 2012). East Africa (EA) appears as a hotspot for evolution and diversification of SPFMV (Tugume, Settumba Mukasa, & Omongo, 2010). Virions are filamentous, not enveloped, usually flexuous, and with a modal length of 830–850 nm. The genome consists of single-stranded linear RNA, with a poly(A) region. Many strains of SPFMV (Moyer, 1986), isolates, variants, and serotypes of SPFMV have been reported By comparing coat protein (CP) gene sequences of isolates, it was shown that isolates from EA form a separate cluster (Kreuze, Karyeija, Gibson, & Valkonen, 2000). The complete nucleotide sequence of a sweet potato feathery mottle virus severe strain (SPFMV-S) genomic RNA was determined from overlapping cDNA clones and by directly sequencing viral RNA. The viral RNA genome is 10,820 nucleotides long, excluding the poly(A) tail and contains one open reading frame starting at nucleotide 118 and ending at 10,599, potentially encoding a polyprotein of 3493 amino acids (Mr 393,800) (Sakai et al., 1997). Though SPFMV alone generally causes only minor damage, its control is imperative as in combination with other viruses its effect on plant growth and yields may become substantial. 2.2 Sweet potato chlorotic stunt virus Genus Crinivirus
Infection of sweet potato by Sweet potato chlorotic stunt virus Genus Crinivirus (SPCSV; possible synonym: Sweet potato sunken vein virus, SPSVV) alone produced on cv. Georgia Jet mild symptoms consisting of slight yellowing of veins, with some sunken secondary veins on the upper sides of the leaves and swollen veins on their lower sides. Upward rolling of the three to five distal leaves was also observed. Effects on yields by SPSVV or SPCSV alone are minor or but in complex infection with SPFMV or other viruses yield losses of 50% and more are observed (Milgram, Cohen, & Loebenstein, 1996; Untiveros, Fuentes, & Salazar, 2007). This was concurrent with a significant reduction in chlorophyll content (Njeru et al., 2004). SPCSV and/or SPSVV are transmitted by the whitefly Bemisia tabaci biotype B, Trialeurodes abutilonea, and B. afer (Gamarra et al., 2010; Ng & Falk, 2006; Schaefers & Terry, 1976; Sheffield, 1957; Sim, Valverde, & Clark, 2000; Valverde, Sim, & Lotrakul, 2004) in a semipersistent manner, requiring at least 1 h for acquisition and infection feeding and reaching a maximum after 24 h for...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.