E-Book, Englisch, 766 Seiten
Litwack Insulin and IGFs
1. Auflage 2009
ISBN: 978-0-08-092215-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 766 Seiten
ISBN: 978-0-08-092215-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. The Editorial Board now reflects expertise in the field of hormone action, vitamin action, X-ray crystal structure, physiology, and enzyme mechanisms.
Under the capable and qualified editorial leadership of Dr. Gerald Litwack, Vitamins and Hormones continues to publish cutting-edge reviews of interest to endocrinologists, biochemists, nutritionists, pharmacologists, cell biologists, and molecular biologists. Others interested in the structure and function of biologically active molecules like hormones and vitamins will, as always, turn to this series for comprehensive reviews by leading contributors to this and related disciplines.
This volume focuses on insulin and IGFs.
*Longest running series published by Academic Press
*Contributions by leading international authorities
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Vitamins and Hormones Insulin and IGFs;4
3;Copyright Page;5
4;Contents;8
5;Preface;16
6;Chapter 1: The Human Insulin Superfamily of Polypeptide Hormones;18
6.1;I. Introduction;19
6.2;II. Relaxin Peptide Hormone Subfamily;27
6.3;III. Concluding Remarks;39
6.4;Acknowledgments;39
6.5;References;39
7;Chapter 2: The Structure and Function of Insulin: Decoding the TR Transition;50
7.1;I. Introduction;51
7.2;II. Structure-Activity Relationships;55
7.3;III. Implications for the Genetics of Diabetes Mellitus;61
7.4;IV. Concluding Remarks;62
7.5;Acknowledgments;63
7.6;References;63
8;Chapter 3: Molecular Mechanisms of Differential Intracellular Signaling From the Insulin Receptor;68
8.1;I. Overview;69
8.2;II. Insulin and the IR;70
8.3;III. Modulation of IR Activity;74
8.4;IV. Differential Activation of the IR;80
8.5;V. Conclusions/Final Words;84
8.6;References;85
9;Chapter 4: c-Abl and Insulin Receptor Signalling;94
9.1;I. Introduction;95
9.2;II. Insulin and IGF-IRs;96
9.3;III. Metabolic Versus Mitogenic Effect of IR;100
9.4;IV. c-Abl Tyrosine Kinase;104
9.5;V. c-Abl and IR Signalling;110
9.6;VI. Concluding Remarks;115
9.7;Acknowledgments;116
9.8;References;116
10;Chapter 5: CXCL14 and Insulin Action;124
10.1;I. Introduction;125
10.2;II. Basic Properties of CXCL14;126
10.3;III. Biological Activities of CXCL14;130
10.4;IV. Novel Functions of CXCL14 Revealed by Knockout Mice;132
10.5;V. Signal Cross-Talk Between CXCL14 and Insulin;136
10.6;VI. CXCL14 as a Metabolic Regulator;136
10.7;VII. Conclusions;138
10.8;References;138
11;Chapter 6: Crosstalk Between Growth Hormone and Insulin Signaling;142
11.1;I. Introduction;143
11.2;II. GH Signaling;144
11.3;III. Insulin Signaling;147
11.4;IV. Regulation of GH Signaling by Insulin;148
11.5;V. Regulation of Insulin Signaling by Chronic GH;157
11.6;VI. Conclusions;159
11.7;Acknowledgments;160
11.8;References;160
12;Chapter 7: Intracellular Retention and Insulin-Stimulated Mobilization of GLUT4 Glucose Transporters;172
12.1;I. Introduction;173
12.2;II. GLUT4 Storage Vesicles (GSVs);175
12.3;III. Insulin-Regulated Aminopeptidase (IRAP);179
12.4;IV. Stability and Trafficking of GLUT4 and IRAP;181
12.5;V. TUG, an Essential Component of a Retention Receptor for GLUT4;183
12.6;VI. From What Membranes do GSVs Originate?;191
12.7;VII. A General Mechanism for the Regulated Targeting of Membrane Proteins;193
12.8;VIII. Conclusions;196
12.9;Acknowledgments;196
12.10;References;196
13;Chapter 8: Compartmentalization and Regulation of Insulin Signaling to GLUT4 by the Cytoskeleton;210
13.1;I. Introduction;211
13.2;II. Insulin Signaling to GLUT4 Vesicles;212
13.3;III. GLUT4 Vesicle Membrane Trafficking;217
13.4;IV. GLUT4 Vesicle Fusion;222
13.5;V. Conclusions;225
13.6;Acknowledgments;225
13.7;References;225
14;Chapter 9: Nutrient Modulation of Insulin Secretion;234
14.1;I. Introduction;235
14.2;II. Overview of Insulin Secretion;236
14.3;III. Nutrient Regulation of Insulin Secretion;241
14.4;References;255
15;Chapter 10: How Insulin Regulates Glucose Transport in Adipocytes;262
15.1;I. Introduction;263
15.2;II. Historical Perspective;267
15.3;III. Current Views and Controversies;282
15.4;IV. Conclusions and Future Directions;294
15.5;References;295
16;Chapter 11: Spatio-Temporal Dynamics of Phosphatidylinositol-3,4,5-Trisphosphate Signalling;304
16.1;I. Introduction;305
16.2;II. Synthesis and Degradation of PIP3;306
16.3;III. Real-Time Measurements of PIP3 in Living Cells;309
16.4;IV. Spatio-Temporal Patterns of PIP3 Signals;312
16.5;V. PIP3 Oscillations and Autocrine Insulin Signalling in beta-Cells;314
16.6;VI. Significance of PIP3 Oscillations;317
16.7;VII. Concluding Remarks;319
16.8;Acknowledgments;320
16.9;References;320
17;Chapter 12: Serine Kinases of Insulin Receptor Substrate Proteins;330
17.1;I. Introduction;331
17.2;II. Insulin and IGF-1 Signaling;331
17.3;III. Regulation of Insulin and IGF-1 Signaling: Role of Ser/Thr Phosphorylation of IRS Proteins;336
17.4;IV. The Consequences of Ser Phosphorylation of IRS Proteins;345
17.5;V. Ser Phosphorylation of IRS Proteins as an Array Phenomenon;350
17.6;VI. Summary;353
17.7;References;354
18;Chapter 13: Phosphorylation of IRS Proteins: Yin-Yang Regulation of Insulin Signaling;368
18.1;I. Introduction;369
18.2;II. Discovery of the IRS Proteins;370
18.3;III. Molecular Structure of the IRS Proteins;371
18.4;IV. Biological Function of IRS Proteins in Insulin Action;381
18.5;V. The Role of IRS Serine Phosphorylation in Mediating the Crosstalk with Other Signaling Pathways;383
18.6;VI. Mechanisms Underlying IRS Serine Phosphorylation-Induced Insulin Resistance;386
18.7;VII. Conclusion;389
18.8;References;390
19;Chapter 14: IRS-2 and Its Involvement in Diabetes and Aging;406
19.1;I. Introduction;407
19.2;II. Identification of IRS-2 Protein;408
19.3;III. Basic Structure of IRS Family Proteins;409
19.4;IV. Involvement of IRS Proteins in Other Signaling Pathways;409
19.5;V. IRS-2 Protein is Well Conserved Across Species;410
19.6;VI. IRS-2, and Its Regulation in Energy Homeostasis;410
19.7;VII. Searching for the Regulatory Factor of IRS-2 Transcription;412
19.8;VIII. Phenotype of IRS-2 Null Mice;414
19.9;IX. The Role of IRS-2 in Female Reproduction;417
19.10;X. The Putative Role of IRS-2 in Aging Process;417
19.11;XI. Summary;419
19.12;References;420
20;Chapter 15: Glucose-Dependent Insulinotropic Polypeptide (Gastric Inhibitory Polypeptide; GIP);426
20.1;I. Introduction;427
20.2;II. Glucose-Dependent Insulinotropic Polypeptide (GIP);429
20.3;III. The GIP Gene and Precursor;432
20.4;IV. GIP Secretion and Metabolism;434
20.5;V. The GIP Receptor;438
20.6;VI. Actions of GIP;442
20.7;VII. GIP-Activated Signal-Transduction Pathways;449
20.8;VIII. Pathophysiology of GIP;456
20.9;Acknowledgments;461
20.10;References;461
21;Chapter 16: Insulin Granule Biogenesis, Trafficking and Exocytosis;490
21.1;I. Introduction;491
21.2;II. Section I;493
21.3;III. Section II;497
21.4;IV. Section III;501
21.5;V. Section IV;508
21.6;References;511
22;Chapter 17: Glucose, Regulator of Survival and Phenotype of Pancreatic Beta Cells;524
22.1;I. Scope;525
22.2;II. Beta Cell Handling of Glucose: Metabolic Specializations to Ensure Low-Affinity/High Capacity Glucose Sensing;526
22.3;III. Glucose as Regulator of the Differentiated Beta Cell Phenotype;529
22.4;IV. Glucose Regulation of Beta Cell Number;535
22.5;V. Beta Cell Handling of Threatening High and Low Glucose Levels;538
22.6;Acknowledgments;547
22.7;References;547
23;Chapter 18: Matrix Metalloproteinases, T Cell Homing and beta-Cell Mass in Type 1 Diabetes;558
23.1;I. Matrix Metalloproteinases and Their Natural Protein Inhibitors;559
23.2;II. T Cell Membrane Type-1 Matrix Metalloproteinase;564
23.3;III. Rodent Model of Human Type 1 Diabetes;567
23.4;IV. T Cell MT1-MMP and CD44 in T1D;569
23.5;Acknowledgment;573
23.6;References;573
24;Chapter 19: Role of Wnt Signaling in the Development of Type 2 Diabetes;580
24.1;I. Introduction;581
24.2;II. Wnt Signaling;582
24.3;III. TCF7L2 Variants and Type 2 Diabetes Risk;587
24.4;IV. Functional Relationship Between Wnt Signaling and Type 2 Diabetes In Vitro;591
24.5;V. Conclusions and Future Directions;592
24.6;References;595
25;Chapter 20: Retinal Insulin Receptor Signaling In Hyperosmotic Stress;600
25.1;I. Introduction;601
25.2;II. Experimental Procedures;603
25.3;III. Results;607
25.4;IV. Discussion;620
25.5;Acknowledgments;624
25.6;References;625
26;Chapter 21: Interleukin-6 and Insulin Resistance;630
26.1;I. Introduction;631
26.2;II. Insulin Signaling and Insulin Resistance;632
26.3;III. IL-6 and Insulin Resistance;636
26.4;IV. Conclusions;642
26.5;Acknowledgment;643
26.6;References;644
27;Chapter 22: Structure, Function, and Regulation of Insulin-Degrading Enzyme;652
27.1;I. Introduction;653
27.2;II. Structure of IDE;654
27.3;III. The Regulation of IDE Activity;659
27.4;IV. Conclusion;662
27.5;Acknowledgments;662
27.6;References;662
28;Chapter 23: Modification of Androgen Receptor Function by Igf-1 Signaling: Implications in the Mechanism of Refractory Prostate Carcinoma;666
28.1;I. Androgen Receptor Signaling;668
28.2;II. IGF Signaling and Foxo-1;670
28.3;III. Interaction between AR and Insulin/IGF-1 Signaling;671
28.4;IV. Clinical Implications of Interactions between IGF-1 Signaling and AR;676
28.5;V. Conclusion;679
28.6;Acknowledgments;680
28.7;References;680
29;Chapter 24: Insulin-Like Growth Factor-2/Mannose-6 Phosphate Receptors;684
29.1;I. Introduction;685
29.2;II. The IGF-2/M6P Receptor;688
29.3;III. Functions of the IGF-2/M6P Receptor;695
29.4;IV. Conclusions;702
29.5;References;702
30;Chapter 25: Interactions of IGF-II with the IGF2R/Cation-Independent Mannose-6-Phosphate Receptor: Mechanism and Biological Outcomes;716
30.1;I. Introduction;717
30.2;II. The Mechanism of the IGF2R:IGF-II Interaction;718
30.3;III. Conclusion;730
30.4;References;731
31;Index;738
32;Color Plates;751