E-Book, Englisch, 744 Seiten
Likens Biogeochemistry of Inland Waters
1. Auflage 2010
ISBN: 978-0-12-381997-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 744 Seiten
ISBN: 978-0-12-381997-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
A derivative of the Encyclopedia of Inland Waters, Biogeochemistry of Inland Waters examines the transformation, flux and cycling of chemical compounds in aquatic and terrestrial ecosystems, combining aspects of biology, ecology, geology, and chemistry. Because the articles are drawn from an encyclopedia, they are easily accessible to interested members of the public, such as conservationists and environmental decision makers. - This derivative text describes biogeochemical cycles of organic and inorganic elements and compounds in freshwater ecosystems
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Biogeochemistry of Inland Waters;4
3;Copyright Page;5
4;Editor;6
5;Contributors;8
6;Contents;12
7;Introduction to the Biogeochemistry of Inland Waters;16
7.1;References Cited/Further Reading;17
8;Properties of Water;18
8.1;Chemical Properties of Water;18
8.1.1;Introduction;18
8.1.2;The Structure of Water;18
8.1.3;Solvation by Water;20
8.1.4;The Reactivity of Water;23
8.1.5;Trends and Patterns in Limnology;23
8.1.5.1;Dissolved Gases;23
8.1.5.2;Major Ions;24
8.1.5.3;Nutrients;24
8.1.6;Conclusion;25
8.1.7;Further Reading;25
8.1.8;Relevant Websites;26
8.2;Physical Properties of Water;27
8.2.1;Introduction;27
8.2.2;Density;27
8.2.3;Heat Capacity/Specific Heat;28
8.2.4;Heat of Fusion/Melting;29
8.2.5;Heat of Vaporization/Condensation;30
8.2.6;Isotopes;30
8.2.7;Sublimation;31
8.2.8;Surface Tension and Cohesiveness;31
8.2.9;Viscosity;32
8.2.10;Colligative Properties;32
8.2.11;Further Reading;32
8.3;Pressure;34
8.3.1;Introduction;34
8.3.2;Hydrostatic Pressure;34
8.3.2.1;Density Variations;37
8.3.2.2;Hydrostatic Forces on Submerged Surfaces;37
8.3.2.3;Buoyancy;39
8.3.3;Dynamic Pressure;40
8.3.4;Pressure in the Equations of Motion;41
8.3.5;Biological Responses;42
8.3.6;Further Reading;43
8.3.7;Relevant Websites;44
8.4;Gas Exchange at the Air-Water Interface;45
8.4.1;Introduction;45
8.4.2;Basic Gas Exchange Principles;45
8.4.3;Physical Factors;45
8.4.3.1;Mechanistic Models of Gas Transfer;46
8.4.4;Chemical Factors;47
8.4.4.1;Solubility of Gases;48
8.4.4.2;Diffusion Coefficient;48
8.4.4.3;Chemical Enhancement;48
8.4.5;Other Factors;49
8.4.5.1;Meteorological Conditions;49
8.4.5.2;Surfactants;49
8.4.5.3;Bubbles;49
8.4.6;Methods for Estimating Gas Exchange Rates;50
8.4.6.1;Purposefully Released Tracers;50
8.4.6.2;Chambers and Enclosures;50
8.4.6.3;Eddy Correlation Methods;50
8.4.7;Empirical Models of Gas Exchange;51
8.4.8;Other Important Aspects of Gas Exchange;52
8.4.9;Conclusion;52
8.4.10;Further Reading;53
8.5;Light, Photolytic Reactivity and Chemical Products;54
8.5.1;Photochemistry Starts from the Absorption of Solar Radiation;54
8.5.2;Primary Photophysics and Subsequent Secondary Chemical Reactions;54
8.5.3;Photochemistry of Organic Carbon;54
8.5.4;Photochemistry of Nitrogen;57
8.5.5;Photochemistry of Phosphorus;57
8.5.6;Coupling of Photooxidation of Organic Matter to the Photoreduction of Metals;57
8.5.7;Heterogeneous Photochemistry;57
8.5.8;Photochemical Reactivity of Organic Matter;58
8.5.9;Regulators of the Photochemical Reactivity of Organic Matter;59
8.5.10;Predicting the Rates of Photoreactions in the Environment;60
8.5.11;Solar Radiation Spectrum Responsible for Photochemical Reactions;62
8.5.12;Rates of Photochemical Reactions in the Environment;62
8.5.13;Responses of Food Webs to the Photochemical Transformation of Organic Matter;62
8.5.14;Contribution of Photochemistry to the Biogeochemistry of Organic Matter;64
8.5.15;Further Reading;65
9;Hydrology;68
9.1;Hydrological Cycle and Water Budgets;68
9.1.1;Introduction;68
9.1.2;Hydrological Cycle;68
9.1.2.1;Hydrological Cycle: Lithospheric Components;70
9.1.2.1.1;Surface water;70
9.1.2.1.2;Soil water;70
9.1.2.1.3;Ground water;70
9.1.3;Nutrient Cycling and Energy Balance;71
9.1.4;Summary;72
9.1.5;Water Budgets;72
9.1.5.1;Framework;72
9.1.5.2;Assessment of Components;72
9.1.5.2.1;Evapotranspiration;72
9.1.5.2.2;Soil-water storage;73
9.1.5.2.3;Groundwater storage;73
9.1.5.2.4;Groundwater runoff;73
9.1.5.3;Two Examples;74
9.1.5.3.1;Global water balance;74
9.1.5.3.2;California;74
9.1.6;Epilogue;74
9.1.7;Further Reading;74
9.2;Atmospheric Water and Precipitation;75
9.2.1;Introduction;75
9.2.2;Precipitation Formation;76
9.2.2.1;Water Vapor in the Atmosphere;76
9.2.2.2;Cloud Formation;77
9.2.2.3;From Cloud Particles to Precipitation;77
9.2.3;Precipitation Observations;78
9.2.3.1;Rain Gauges;78
9.2.3.2;Radar;78
9.2.3.3;Satellite Remote Sensing;79
9.2.4;Modeling Precipitation;81
9.2.4.1;Scale-Invariant Statistical Models;81
9.2.5;Conclusions;83
9.2.6;Glossary;83
9.2.7;Further Reading;84
9.2.8;Relevant Websites;84
9.3;Snow and Ice;85
9.3.1;Further Reading;85
9.3.2;Relevant Websites;85
9.4;Evapotranspiration;86
9.4.1;Introduction;86
9.4.2;Evaporation and the Projected Acceleration in the Global Hydrologic Cycle;86
9.4.3;Evapotranspiration and the Continental-Scale Hydrologic Cycle;87
9.4.4;Evapotranspiration at Local Scales: Knowledge Gaps and Why the Problem of its Quantification Persists;90
9.4.5;Conclusions;92
9.4.6;Further Reading;92
9.5;Vadose Water;93
9.5.1;Introduction;93
9.5.2;Fundamental Processes of Vadose Water;93
9.5.2.1;Unsaturated Hydrostatics;93
9.5.2.1.1;Water content;93
9.5.2.1.2;Water pressure and energy;93
9.5.2.1.3;Water retention;94
9.5.2.1.3.1;Examples;95
9.5.2.1.3.2;Practical significance;96
9.5.2.1.3.3;Measurement or estimation of water retention;96
9.5.2.1.3.4;Empirical formulas for water retention;96
9.5.2.2;Diffuse Unsaturated Flow;96
9.5.2.2.1;Darcy's law for vadose water;97
9.5.2.2.2;Unsteady diffuse flow;97
9.5.2.2.3;Unsaturated hydraulic conductivity;97
9.5.2.2.3.1;Measurement or estimation of unsaturated K;97
9.5.2.2.3.2;Empirical formulas for unsaturated K;98
9.5.2.2.4;Effects of dissimilar materials;98
9.5.2.3;Preferential Flow;98
9.5.2.3.1;Types of preferential flow;98
9.5.2.3.2;Quantification of preferential flow;99
9.5.3;Vadose Water in the Hydrologic Cycle;100
9.5.3.1;Moisture State in the Vadose Zone;100
9.5.3.2;Moisture Dynamics in the Vadose Zone;101
9.5.3.2.1;Interactions at the land surface;101
9.5.3.2.1.1;Infiltration;101
9.5.3.2.1.2;Evapotranspiration;101
9.5.3.2.2;Redistribution of infiltrated water;102
9.5.3.3;Aquifer Recharge;103
9.5.4;Conclusion;103
9.5.5;Further Reading;104
9.6;Ground Water;105
9.6.1;Introduction;105
9.6.2;Aquifer Basics;105
9.6.3;Groundwater Flow Systems;106
9.6.4;Recharge;107
9.6.5;Groundwater Budgets;107
9.6.5.1;Effects of Pumping on Groundwater Budgets;108
9.6.5.2;Effects of Climate on Groundwater Budgets;108
9.6.6;Groundwater Quality;109
9.6.7;Groundwater Data and Models;109
9.6.8;Further Reading;110
9.6.9;Relevant Websites;111
9.7;Ground Water and Surface Water Interaction;112
9.7.1;Introduction;112
9.7.2;SW-GW Interaction: Scales and Effects;112
9.7.3;Measuring GW-SW Interaction: Methods and Approaches;112
9.7.3.1;Direct Measures of Exchange;113
9.7.3.2;Heat Tracer Methods;113
9.7.3.3;Use of Darcy's Law;113
9.7.3.4;Mass-Balance Approaches;114
9.7.4;GW-SW Interactions across the Inland Hydrosphere;116
9.7.4.1;Streams;116
9.7.4.2;The Hyporheic Zone and Transient Storage Modeling;117
9.7.4.3;Rivers and Floodplains;118
9.7.4.4;Lakes and Wetlands;120
9.7.5;Human Impacts and Future Research;121
9.7.5.1;Agricultural Development;121
9.7.5.2;Urbanization;122
9.7.5.3;Hydrosphere Modifications;122
9.7.5.4;Future Research;122
9.7.6;Glossary;122
9.7.7;Further Reading;122
9.7.8;Relevant Websites;123
9.8;Groundwater Chemistry;124
9.8.1;Introduction;124
9.8.2;Chemical Composition Changes along Groundwater Flow Paths;124
9.8.3;Chemical Composition Changes in Ground Water due to Human Activity;128
9.8.4;Geochemical Models and Mass Balance Examination of Chemical Composition Changes in Ground Water;133
9.8.5;The Relation of Chemical Characteristics of Ground Water to Chemical Characteristics of Surface Water;133
9.8.6;Further Reading;134
9.8.7;Relevant Websites;134
9.9;Fluvial Export;135
9.9.1;Riverine Fluxes and Earth System;135
9.9.1.1;River Data Bases;135
9.9.2;Riverine Fluxes at Stations;136
9.9.2.1;Daily to Seasonal Variations of Riverine Fluxes at Stations;136
9.9.2.2;Flux Determination from Discrete Sampling;136
9.9.2.3;Flux Durations;137
9.9.2.4;Interannual Variations of Fluxes;137
9.9.3;Geographic Variability of Riverine Fluxes;137
9.9.3.1;Particulate Fluxes and TSS Levels;137
9.9.3.2;Major Ions and Total Dissolved Solids;141
9.9.3.3;Major World Rivers and Their Ranked Fluxes;141
9.9.4;Human Impacts on Riverine Fluxes;144
9.9.4.1;Total Suspended Solids and Total Dissolved Solids;144
9.9.4.2;Nutrients in World Rivers: From Natural to Contemporary Loads;144
9.9.4.3;Nutrients Trends and Changes in Stoechiometric N: P:Si Ratios;145
9.9.4.4;Trajectories of Riverine Fluxes Reflect Pressures Evolution and Water Quality Management;145
9.9.5;Further Reading;146
9.9.6;Relevant Websites;147
9.10;Fluvial Transport of Suspended Solids;148
9.10.1;Introduction;148
9.10.2;Equilibrium Transport of Sediment Suspensions;148
9.10.3;Nonequilibrium Transport of Sediment Suspensions;149
9.10.4;Further Reading;150
9.11;Streams;151
9.11.1;Introduction;151
9.11.2;Spatial Organization of Streams in Drainage Networks;151
9.11.3;Sources of Flow in Streams;152
9.11.4;Movement of Water into Stream Channels;153
9.11.5;Movement of Sediment into Stream Channels;155
9.11.6;Characteristics of Flow in Streams;156
9.11.7;Glossary;158
9.11.8;Further Reading;159
9.11.9;Relevant Websites;159
9.12;Rivers;160
9.12.1;What is a River?;160
9.12.2;Hydrology and Geomorphology;160
9.12.2.1;Water Sources and Discharge;160
9.12.2.2;Flooding;161
9.12.2.3;Water Movement;162
9.12.2.4;Geomorphology;163
9.12.2.5;Water Regulation;164
9.12.3;Water Quality;165
9.12.3.1;Particulate Matter;165
9.12.3.2;Dissolved Substances;165
9.12.3.3;Nutrients;166
9.12.3.4;Dissolved Gases;166
9.12.3.5;Pollutants;167
9.12.4;Biology of Rivers;167
9.12.4.1;Primary Producers;167
9.12.4.2;Invertebrates;168
9.12.4.3;Fishes;169
9.12.4.4;River Food Webs;169
9.12.5;Global Biogeochemical Cycling;170
9.12.6;Glossary;171
9.12.7;Further Reading;171
9.13;Springs;172
9.13.1;What are Springs?;172
9.13.2;Geological Origin of Springs;172
9.13.3;Kinds of Springs;172
9.13.4;Biology of Springs;174
9.13.4.1;Nonthermal Springs;174
9.13.4.2;Thermal Springs;182
9.13.5;Importance of Springs;184
9.13.5.1;Geological Importance;184
9.13.5.2;Ecological Importance;185
9.13.5.3;Scientific Importance;185
9.13.5.4;Cultural and Societal Importance;189
9.13.6;Conservation of Springs;190
9.13.7;Glossary;191
9.13.8;Further Reading;192
9.13.9;Relevant Websites;192
9.14;Wetland Hydrology;194
9.14.1;Introduction;194
9.14.2;Water Sources;194
9.14.3;Factors Contributing to Wetland Hydrology;194
9.14.4;How Wet is a Wetland?;196
9.14.4.1;Wetland Hydrology Defined;196
9.14.4.2;Depth of Saturation;196
9.14.4.3;Duration of Wetness;196
9.14.4.4;Frequency of Prolonged Wetness;196
9.14.4.5;Growing Season;197
9.14.5;Does Prolonged Saturation Guarantee Anaerobic and Reducing Conditions?;197
9.14.6;Wetland Water Regimes;198
9.14.7;Hydrographs for Different Wetland Types;198
9.14.7.1;Changing Water Levels;199
9.14.8;Water Budget;199
9.14.8.1;Inputs;200
9.14.8.2;Outputs;202
9.14.8.3;Annual Water Budgets;202
9.14.9;Wetland Hydrology Indicators;202
9.14.10;Glossary;204
9.14.11;Further Reading;205
9.14.12;Relevant Websites;205
10;Hydrodynamics and Mixing in Lakes, Reservoirs, Wetlands and Rivers;206
10.1;Biological-Physical Interactions;206
10.1.1;Introduction;206
10.1.2;Water Movements - The Concept of Scale;206
10.1.3;Small-Scale Turbulence;207
10.1.4;Physical Influences on the Size and Structure of Organisms;208
10.1.5;Turbulent Extent and the Pelagic Habitat;209
10.1.6;Mixed Layer Depth and the Maintenance of Non-motile Plankton;209
10.1.7;Physical Influences on Nutrient Fluxes;210
10.1.8;Nutrient Fluxes at the Microscale;210
10.1.9;Further Reading;212
10.2;Density Stratification and Stability;213
10.2.1;Introduction;213
10.2.2;Circulation Patterns;213
10.2.3;Density Differences and Formation of Layers;214
10.2.3.1;Temperature Stratification;214
10.2.3.2;Thermobaric Stratification;215
10.2.3.3;Salinity Stratification;216
10.2.3.4;Processes Forming Gradients of Dissolved Substances;217
10.2.3.5;Episodic Partial Deep Water Renewal;218
10.2.4;Quantifying Stability;218
10.2.4.1;Temperature;218
10.2.4.2;Salinity, Electrical Conductivity and Electrical Conductance;218
10.2.4.3;Density;219
10.2.4.4;Stability;219
10.2.4.4.1;Differential Quantities;220
10.2.4.4.2;Bulk Quantities;221
10.2.5;Nomenclature;218
10.2.6;Further Reading;222
10.2.7;Relevant Websites;223
10.3;The Surface Mixed Layer in Lakes and Reservoirs;224
10.3.1;Background;224
10.3.2;Mixed Layer Motions and Turbulence;224
10.3.2.1;Basic Ideas of Turbulence (refer 'see also' section);224
10.3.2.2;Winds on Lakes;225
10.3.3;Surface Energy Exchanges;228
10.3.4;Mixed Layer Deepening and Entrainment;230
10.3.4.1;Mixing and Turbulence Energetics;230
10.3.4.2;Upwelling;233
10.3.4.3;Synthesis;234
10.3.5;Summary;238
10.3.6;Further Reading;238
10.4;Small-Scale Turbulence and Mixing: Energy Fluxes in Stratified Lakes;239
10.4.1;Introduction;239
10.4.1.1;Density Stratification and Mixing - the Basin Scale;239
10.4.1.2;Density Stratification and Mixing - the Small Scale;239
10.4.1.3;Density Stratification and Mixing - the Turbulent Transport;242
10.4.2;Turbulence and Mixing in Stratified Lakes and Reservoirs;242
10.4.2.1;Turbulence Production in the Surface and Bottom Boundaries;242
10.4.2.2;Internal Waves and Turbulence in the Stratified Interior;244
10.4.3;Turbulent Energy Flux through the Water Column - Synthesis;245
10.4.4;Further Reading;246
10.5;The Benthic Boundary Layer (in Rivers, Lakes, and Reservoirs);247
10.5.1;Introduction;247
10.5.1.1;Definition and Relevance of the Benthic Boundary Layer;247
10.5.1.2;Structure of the BBL;247
10.5.2;The Transport of Momentum;247
10.5.2.1;The Turbulent BBL;247
10.5.2.2;The Viscous Sublayer;249
10.5.2.3;Effects of Bottom Roughness;249
10.5.2.4;Oscillatory Boundary Layers;250
10.5.3;Stratified BBL;250
10.5.3.1;Effects of Density Stratification;250
10.5.3.2;2-Dimensional Mixing Processes in Enclosed Basins;250
10.5.3.3;Turbulence Induced by Internal Wave Interactions with Bottom Boundaries;251
10.5.4;Solute Transport and Sediment-Water Exchange;251
10.5.4.1;The Diffusive Sublayer;251
10.5.4.2;Effects of Small-Scale Sediment Topography;253
10.5.4.3;Nondiffusive Fluxes;254
10.5.4.4;In Situ Flux Measurements;254
10.5.5;Particle Dynamics;254
10.5.6;Glossary;255
10.5.7;Further Reading;255
10.6;Currents in Rivers;256
10.6.1;Introduction;256
10.6.2;Controlling Factors and Classifications of Currents;256
10.6.3;Currents in Fluvial Channels;257
10.6.4;Secondary Currents;258
10.6.5;Structure of Currents at River Confluences;259
10.6.6;Currents at Engineering Structures;260
10.6.7;Navigation-Induced Currents;261
10.6.8;Nomenclature;262
10.6.9;Further Reading;263
10.6.10;Relevant Websites;263
10.7;Currents in Stratified Water Bodies 1: Density-Driven Flows;264
10.7.1;Introduction;264
10.7.2;Characteristics of Density Currents;264
10.7.3;Density Plumes Generated by External Inputs;266
10.7.3.1;River Inflows;266
10.7.3.2;Interbasin Exchange;267
10.7.3.3;Subsurface Inflows;268
10.7.4;Density Plumes Generated by Internal Processes;268
10.7.4.1;Differential Cooling;268
10.7.4.2;Thermal Bar;268
10.7.4.3;Thermal Baricity;270
10.7.4.4;Turbidity Currents Generated by Waves;271
10.7.4.5;Horizontal Density Currents Generated under Ice Cover;271
10.7.5;Density Currents in Tropical and Saline Lakes;271
10.7.6;Impact of Changes in the Environmental Conditions on Density Currents and Deep-Water Renewal;271
10.7.7;Further Reading;272
10.8;Currents in Stratified Water Bodies 2: Internal Waves;273
10.8.1;Introduction;273
10.8.2;Characteristic Geometry and Water-.Column Stratification;273
10.8.3;Surface Momentum Transfer and Wind Set-Up;273
10.8.3.1;Wind Set-Up of the Free Surface;273
10.8.3.2;Wind Set-Up of the Internal Stratification;274
10.8.3.3;Wedderburn and Lake Numbers;276
10.8.4;Basin-Scale Standing Wave Motions (Seiches);277
10.8.4.1;Interfacial Waves in a Layered Stratification;277
10.8.4.1.1;Horizontal modes;277
10.8.4.1.2;Vertical modes;279
10.8.4.2;Internal Modes in a Continuous Stratification;280
10.8.5;Degeneration of Basin-Scale Internal Waves in Lakes;281
10.8.5.1;Regime 1: Damped Linear Waves;282
10.8.5.2;Regime 4: Kelvin-Helmholtz Billows;282
10.8.5.3;Regime 3: Supercritical Flow;284
10.8.5.4;Regime 2: Solitary Waves;284
10.8.6;Shoaling of Nonlinear Internal Waves;285
10.8.7;Progressive Internal Wave Rays in a Continuous Stratification;286
10.8.8;Resonant and Forced Internal Waves;288
10.8.9;Analysis of Timeseries Data;288
10.8.10;Summary;291
10.8.11;Further Reading;292
10.9;Currents in Stratified Water Bodies 3: Effects of Rotation;294
10.9.1;Introduction;294
10.9.2;Governing Equations;295
10.9.3;Gravity Waves;295
10.9.4;Current Structure and Measurement;299
10.9.5;Vorticity Waves;300
10.9.6;Practical Guide to Measurement of these Waves;301
10.9.7;Nomenclature;301
10.9.8;Glossary;302
10.9.9;Further Reading;302
10.10;Currents in the Upper Mixed Layer and in Unstratified Water Bodies;303
10.10.1;Introduction;303
10.10.2;Fundamental Concepts;304
10.10.2.1;Shallow Water Equations;304
10.10.2.2;Lateral and Vertical Circulations;304
10.10.2.3;Rotational Effects in Shallow Layers;305
10.10.3;Wind Setup;305
10.10.4;Lateral Circulation;306
10.10.4.1;Generation of Circulation in Homogenous Layers;306
10.10.4.2;Topographic Gyres in Homogenous Basins;306
10.10.4.3;Topographic Waves in Homogenous Bodies;307
10.10.4.4;Spatial Variability of Wind Forcing;309
10.10.4.5;Other Sources of Circulation;310
10.10.5;Vertical Circulation;310
10.10.6;Circulation Patterns in Natural Systems (Lakes and Reservoirs);314
10.10.7;Conclusions and Future Research Needs;316
10.10.8;Further Reading;316
10.11;Flow in Wetlands and Macrophyte Beds;318
10.11.1;Lakes;318
10.11.2;Nontidal Wetlands;323
10.11.3;Rivers;324
10.11.4;Saltmarshes and Mangroves;327
10.11.5;Summary;327
10.11.6;Nomenclature;327
10.11.7;Further Reading;329
10.11.8;Relevant Websites;329
10.12;Flow Modification by Submerged Vegetation;330
10.12.1;Introduction;330
10.12.2;Distribution of Flow in and above the Vegetation;330
10.12.3;Turbulence Structure with Submerged Canopies;332
10.12.3.1;Sparse and Dense Canopies;333
10.12.3.2;Flexible Canopies;333
10.12.4;Canopy Water Renewal;333
10.12.5;Summary;335
10.12.6;Further Reading;336
10.13;Hydrodynamical Modeling;337
10.13.1;Introduction;337
10.13.2;Dimensionality and Capabilities;337
10.13.3;Boundary and Initial Conditions;339
10.13.4;Calibration;341
10.13.5;Hydrostatic Approximation;341
10.13.6;Model Grid;341
10.13.6.1;Overview;341
10.13.6.2;Grid Size and Convergence;344
10.13.6.3;Horizontal Grid Systems;344
10.13.6.4;Vertical Grid Systems;346
10.13.7;Time Step;347
10.13.8;Numerical Methods;347
10.13.9;Order of Accuracy;348
10.13.10;Model Errors;348
10.13.11;Modeling Turbulence and Mixing;348
10.13.12;Similarities and Differences between Lake and River Modeling;349
10.13.13;Summary and Future Directions;349
10.13.14;Further Reading;351
11;Inorganic Chemicals: Cycles and Ecosystem Dynamics;352
11.1;Chemical Fluxes and Dynamics in River and Stream Ecosystems;352
11.1.1;Introduction;352
11.1.2;Transport;354
11.1.3;Oxic Processes;356
11.1.4;Anoxic Processes;357
11.1.5;Overview;358
11.1.6;Glossary;358
11.1.7;Further Reading;359
11.2;Dissolved CO2;360
11.2.1;The Dissolve Inorganic Carbon System;360
11.2.2;Dissolved CO2 - A Master Variable;360
11.2.3;Atmospheric Exchange of CO2;361
11.2.3.1;Regulation of Dissolved CO2 in Aquatic Ecosystems;362
11.2.3.2;Regulation of pH by Dissolved CO2;362
11.2.4;Measurement and Calculation of Dissolved CO2;363
11.2.4.1;Measurement;363
11.2.4.2;Calculation;364
11.2.5;Glossary;364
11.2.6;Further Reading;364
11.2.7;Glossary;364
11.3;Alkalinity;365
11.3.1;Introduction;365
11.3.2;Chemistry of Buffers;365
11.3.2.1;Chemical Background;365
11.3.2.2;Measurement;365
11.3.2.3;Effect of Carbon Dioxide;366
11.3.3;Origin of Alkalinity;367
11.3.3.1;Weathering;367
11.3.3.2;Cation Exchange;367
11.3.3.3;Assimilatory Uptake;367
11.3.3.4;Dissimilatory Redox Reactions;367
11.3.3.5;Evaporation and Precipitation;368
11.3.4;Biology of Alkaline and Acidic Lakes;368
11.3.4.1;Natural Buffering;368
11.3.4.2;Low Alkalinity Acidic Waters;369
11.3.4.3;Highly Alkaline Lakes;370
11.3.5;Further Reading;370
11.3.6;Relevant Websites;370
11.4;Major Cations (Ca, Mg, Na, K, Al);371
11.4.1;Cation Functions and Stoichiometry;371
11.4.2;Sources of Major Cations;371
11.4.3;Biological and Geochemical Sinks for Major Cations;372
11.4.4;Analytical Distinctions among Cations;373
11.4.5;Cation Chemistry in Fresh Waters;373
11.4.6;Environmental and Anthropogenic Influences on Cation Chemistry;376
11.4.7;Nomenclature;376
11.4.8;Further Reading;377
11.4.9;Relevant Websites;377
11.5;Chloride;378
11.5.1;Introduction: Chloride and Salinization;378
11.5.2;Natural and Anthropogenic Sources of Chloride to Inland Waters;378
11.5.3;Ecological Implications of Increased Chloride Concentrations;381
11.5.4;Retention of Chloride within Watersheds and Inland Waters;382
11.5.5;Conclusions;382
11.5.6;Knowledge Gaps;382
11.5.7;Further Reading;383
11.5.8;Relevant Websites;384
11.6;Iron and Manganese;385
11.6.1;Introduction;385
11.6.2;Iron and Manganese Chemistry;385
11.6.2.1;Redox Reactions;385
11.6.2.2;Major Chemical Forms in Natural Waters;385
11.6.2.3;Chemical Interactions through Adsorption onto Fe and Mn Oxides;386
11.6.3;Fe and Mn in Rivers and Streams;386
11.6.3.1;The World's Major Rivers;386
11.6.3.2;Smaller Streams and Rivers;387
11.6.4;Fe and Mn in Lakes;388
11.6.4.1;Inputs;388
11.6.4.2;Losses;388
11.6.5;Cycling within Sediments;388
11.6.5.1;Lakes;388
11.6.5.2;Streams and Rivers;390
11.6.6;Cycling within the Water Column;390
11.6.6.1;Lakes;390
11.6.6.2;Streams and Rivers;391
11.6.7;Fe and Mn Oxides and Trace Metals;391
11.6.8;Special Environments;392
11.6.8.1;Waters Receiving Acid Mine Drainage or Acid Rock Drainage;392
11.6.8.2;Hydrothermally Influenced Water Bodies;393
11.6.9;Glossary;394
11.6.10;Further Reading;394
11.7;Micronutrient Elements (Co, Mo, Mn, Zn, Cu);395
11.7.1;Introduction;395
11.7.2;Cobalt;395
11.7.3;Molybdenum;396
11.7.4;Manganese;397
11.7.5;Zinc;397
11.7.6;Copper;398
11.7.7;Conclusion;398
11.7.8;Glossary;398
11.7.9;Further Reading;399
11.7.10;Glossary;399
11.8;Biogeochemistry of Trace Metals and Mettaloids;400
11.8.1;Introduction;400
11.8.2;Essential and Nonessential Trace Elements;400
11.8.3;Sources of Trace Elements;400
11.8.3.1;Geological Sources;400
11.8.3.2;Anthropogenic Sources;401
11.8.3.2.1;Point source pollution;401
11.8.3.2.2;Nonpoint source pollution;401
11.8.3.2.3;Sources to the atmosphere;401
11.8.4;Biogeochemistry of Trace Metals in Fresh Waters;401
11.8.4.1;Aqueous Complexation;402
11.8.4.2;Phase Partitioning;403
11.8.4.3;Oxidation, Reduction, and Speciation;403
11.8.4.4;Microbial Metal Reduction and Oxidation;404
11.8.5;Biological Uptake, Accumulation, and Transformation of Metals;404
11.8.5.1;Metal Resistance Mechanisms;405
11.8.6;Example: Arsenic and Selenium;405
11.8.7;Example: Mercury;405
11.8.7.1;MeHg Production;406
11.8.7.2;MeHg Demethylation and Hg Reduction;407
11.8.7.3;Temporal and Spatial Controls on Net Hg Methylation;407
11.8.7.4;MeHg Accumulation in Food Webs;407
11.8.7.5;Solving the Mercury Problem;407
11.8.8;Further Reading;408
11.8.9;Relevant Websites;408
11.9;Nitrogen Fixation;409
11.9.1;Introduction to Biological Nitrogen Fixation in Aquatic Systems;409
11.9.2;Nitrogen Fixation by Heterotrophic Bacteria in Sediments;410
11.9.3;Nitrogen Fixation by Planktonic Cyanobacteria in Freshwater Lakes;410
11.9.4;Nitrogen Fixation by Planktonic Cyanobacteria in Saline Waters;413
11.9.5;Nitrogen Fixation by Benthic and Epiphytic Cyanobacteria;414
11.9.6;Conclusions;414
11.9.7;Glossary;415
11.9.8;Further Reading;416
11.9.9;Glossary;416
11.10;Nitrogen;417
11.10.1;Introduction;417
11.10.2;Forms and Transformations of Nitrogen;417
11.10.3;Nitrogen Cycling at the Ecosystem Scale;419
11.10.4;Nutrient Limitation of Net Primary Production;420
11.10.5;Human Acceleration of the Nitrogen Cycle;421
11.10.6;Glossary;423
11.10.7;Further Reading;423
11.11;Phosphorus;425
11.11.1;Introduction;425
11.11.2;History of P Research and Basic Chemical Properties of P;425
11.11.3;P Limitation of Production in Inland Waters;426
11.11.4;Global Regional and Landscape Transfers of P;427
11.11.5;P Cycling and Retention in Inland Waters;428
11.11.6;Continuing Research on the P Cycle;430
11.11.7;Glossary;430
11.11.8;Further Reading;430
11.12;Silica;431
11.12.1;Si Cycling at the Ecosystem Scale;431
11.12.2;Silica Cycling in Natural Waters;432
11.12.3;DSi Limitation;432
11.12.4;Human Influence on Si Cycling;433
11.12.5;Continuing Research on the Si Cycle;434
11.12.6;Glossary;434
11.12.7;Further Reading;434
11.13;Salinity;435
11.13.1;Ecological Responses;436
11.13.2;Salt as a Conservative Tracer in Watersheds;437
11.13.3;Dryland Salinity and Salinization of Inland Waters;438
11.13.4;Further Reading;439
12;Organic Compounds: Cycles and Dynamics;442
12.1;Allelochemical Reactions;442
12.1.1;Introduction;442
12.1.2;Terminology;442
12.1.2.1;Experimental Approaches Studying Allelochemical Reactions;443
12.1.3;Range of Allelochemical Reactions;443
12.1.4;Animal-Animal Interactions;444
12.1.4.1;Fish Kairomones;444
12.1.4.2;Invertebrate Kairomones;445
12.1.4.3;Alarm Cues;446
12.1.4.4;Partner Finding and Kin Recognition;446
12.1.5;Plant-Animal Interactions;446
12.1.5.1;Impact of Plants on Grazing and Herbivory;446
12.1.5.1.1;Cyanobacterial toxins;446
12.1.5.1.2;Herbivore deterrents;448
12.1.5.1.3;Foraging kairomones;449
12.1.5.2;Impact of Grazers on Plants;449
12.1.6;Plant-Plant Interactions;449
12.1.6.1;Allelopathy;449
12.1.6.2;Autotoxicity;452
12.1.6.3;Algal Pheromones;452
12.1.7;Allelochemical Reactions Involving Heterotrophic Microorganisms;453
12.1.8;Further Reading;453
12.2;Carbohydrates;454
12.2.1;Introduction;454
12.2.2;Carbohydrates and their Building Blocks;454
12.2.3;Carbohydrates in Aquatic Environments;454
12.2.4;Analytical Problems Measuring Carbohydrates in Natural Waters;454
12.2.4.1;Colorimetric Methods;454
12.2.4.2;Chromatographic Methods;456
12.2.4.3;Comparison of Methods;456
12.2.5;Concentrations of Dissolved Free and Combined Carbohydrates;456
12.2.5.1;Total Amounts of Carbohydrates;456
12.2.5.2;Carbohydrates Relative to DOC;456
12.2.5.3;Free Monosaccharides;456
12.2.6;Sources of Carbohydrates in Water;459
12.2.6.1;Release by Phytoplankton;459
12.2.6.2;Release by Colony-Forming Algae and Plants;459
12.2.6.3;Other Sources of Carbohydrates;459
12.2.7;Composition of Carbohydrates in Water;459
12.2.7.1;Carbohydrates in Algae and Dissolved in Water;459
12.2.7.2;Natural Saccharides in Fresh Water;459
12.2.8;Dynamic Concentrations of Dissolved Carbohydrates;460
12.2.8.1;Annual Variations in Carbohydrate Pools;460
12.2.8.2;Daily Variations in Carbohydrate Pools;461
12.2.8.3;Carbohydrates and Algae in Running Waters;462
12.2.8.4;Relations Between Carbohydrates and Phytoplankton in a Large Lake;462
12.2.9;Assimilation of Carbohydrates;462
12.2.9.1;Uptake of Carbohydrates and Bacterial Growth;462
12.2.9.2;Uptake of Glucose and Fructose;462
12.2.9.3;Measurements of Uptake of Free Saccharides;464
12.2.9.4;Uptake of all Carbohydrates and Bacterial Growth;464
12.2.9.5;Utilization of Polysaccharides Requires Enzymes;464
12.2.9.6;Enzymatic Activity in a French River Reservoir;466
12.2.10;Special Polysaccharides: TEP and Alginates;467
12.2.10.1;Transparent Exopolymer Particles;467
12.2.10.2;Alginates;467
12.2.11;Carbohydrates in Humic Matter;467
12.2.12;Carbohydrates and Stable Isotopes;467
12.2.12.1;Application of Stable Isotopes in Ecology;467
12.2.12.2;Tracing of Carbohydrates in a Food Web;468
12.2.13;Carbohydrates - From Molecule to Trees;468
12.2.14;Further Reading;469
12.3;Carbon, Unifying Currency;470
12.3.1;Introduction;470
12.3.2;Carbon Pools;470
12.3.3;A Simplified Carbon Cycle for Inland Waters;470
12.3.4;The Predictability of Carbon-Based Aquatic Processes;472
12.3.4.1;Patterns of Organic Matter Production;472
12.3.4.2;Patterns of Organic Matter Oxidation;472
12.3.5;Glossary;473
12.3.6;Further Reading;473
12.4;Dissolved Humic Substances: Interactions with Organisms;474
12.4.1;Introduction;474
12.4.2;Interference within Photosynthetic Oxygen Production;474
12.4.3;Hormone-Like Effects;475
12.4.4;Chemical Attraction and Gene Regulation in C elegans;475
12.4.5;Interaction with Membranes;476
12.4.6;Chemical Stress Defense;477
12.4.7;Acquisition of Multiple Stress Resistance;478
12.4.8;Conclusion;479
12.4.9;Glossary;479
12.4.10;Further Reading;480
12.5;Interactions of Dissolved Organic Matter and Humic Substances;481
12.5.1;Introduction;481
12.5.2;The Physical Appearance of Humic Substances in Water;481
12.5.3;Colloidal Organic Matter;483
12.5.4;Aggregation;483
12.5.5;Mechanisms of Collisions and Formation of Colloids and Larger Particles;484
12.5.5.1;Size and Concentration;484
12.5.5.2;Brownian Motion (Thermal Effects);484
12.5.5.3;Shear (Flow Effect) and Turbulence;485
12.5.5.4;Differential Settling (Gravity Effects);485
12.5.5.5;Diffusive Capture;485
12.5.5.6;Surface Coagulation and Bubbling;485
12.5.5.7;Filtration;485
12.5.5.8;Microbial Activity and TEP;485
12.5.5.9;Cations, pH, and Adsorption to Particles;485
12.5.5.10;Sunlight;485
12.5.5.11;The Role of Iron for Aggregation;485
12.5.6;Interactions of DOM and Humic Substances with Metals and Nutrients;486
12.5.6.1;Metals;486
12.5.6.2;DOM, Iron, and Inorganic Phosphorus;486
12.5.6.3;DOM and Nitrogen;486
12.5.6.4;Humic Substances and Hydrophobic Contaminants;486
12.5.7;Concluding Remarks;487
12.5.8;Glossary;487
12.5.9;Further Reading;487
12.6;Lipids;488
12.6.1;Introduction;488
12.6.2;Essential Fatty Acids;488
12.6.3;Important Lipid Groups and Functions;489
12.6.4;Fatty Acid Transfer and Modification in the Freshwater Food Web;491
12.6.4.1;Eukaryotic Algae;491
12.6.4.2;EFA in Freshwater Fish;492
12.6.4.3;Characteristics of Food for Freshwater Fish;494
12.6.5;Concluding Remarks;495
12.6.6;Glossary;495
12.6.7;Further Reading;496
12.6.8;Relevant Websites;496
12.7;Methane;497
12.7.1;Introduction;497
12.7.2;CH4 Formation;497
12.7.2.1;Biochemical and Microbiological Aspects of Methanogenesis;497
12.7.2.2;Environmental Factors Affecting Methanogenesis;498
12.7.2.3;Spatial Distribution of Methanogenesis in Freshwater Environments;499
12.7.3;CH4 Oxidation;500
12.7.3.1;Aerobic Methane Oxidation;500
12.7.3.2;Environmental Factors Affecting CH4 Oxidation;500
12.7.3.3;Anaerobic CH4 Oxidation;500
12.7.3.4;Spatial Distribution of Aquatic CH4 Oxidation;500
12.7.4;Aquatic CH4 Dynamics;502
12.7.4.1;CH4 Concentrations in Aquatic Environments;502
12.7.4.2;Rates of CH4 Formation and Oxidation;502
12.7.4.3;CH4 and Aquatic Food Webs;506
12.7.5;CH4 Emissions from Inland Waters;506
12.7.5.1;Flux Pathways;506
12.7.5.2;The Contribution of Different Flux Types and their Regulation;510
12.7.6;CH4 and Whole-System Carbon Cycling;518
12.7.7;Knowledge Gaps;518
12.7.8;See also;518
12.7.9;Further Reading;519
12.8;Natural Organic Matter;520
12.8.1;Introduction;520
12.8.2;Definitions;520
12.8.3;Inventories and Fluxes of NOM;520
12.8.4;Isolation of NOM;522
12.8.4.1;Solid Phase Extractions of NOM;522
12.8.4.2;Membrane Isolation of NOM;523
12.8.4.3;Coupled Reverse Osmosis and Electrodialysis;524
12.8.5;Molecular Weights of NOM;524
12.8.5.1;Non-Colligative Methods;525
12.8.5.2;Colligative Methods;525
12.8.6;Elemental Composition of NOM;525
12.8.6.1;Redfield Biomass;526
12.8.6.2;Oxidation State of Organic Carbon;527
12.8.6.3;Unsaturation;528
12.8.7;Acidic Functional Groups of NOM;529
12.8.8;13C NMR Spectroscopy of NOM;530
12.8.9;Integrated Description of NOM;531
12.8.10;Further Reading;532
12.9;Organic Nitrogen;534
12.9.1;Introduction;534
12.9.2;Dissolved Nitrogen in Aquatic Environments;534
12.9.2.1;Definition of Nitrogen Pools;534
12.9.2.2;DON vs DIN;534
12.9.3;Natural DON Compounds;535
12.9.3.1;Composition and Detection;535
12.9.3.2;Specific DON Compounds;535
12.9.3.3;Dissolved Free and Combined Amino Acids;538
12.9.3.4;Amino Acids in a Stratified Lake;538
12.9.3.5;Composition of DFAA;539
12.9.3.6;Composition of DCAA;539
12.9.3.7;Nonprotein Amino Acids;540
12.9.4;Other DON Compounds;540
12.9.4.1;Glucosamine and Other Amino Sugars;540
12.9.4.2;Dissolved RNA and DNA;541
12.9.4.3;Urea;542
12.9.4.4;Methylamines;542
12.9.4.5;Humic Matter;542
12.9.5;Sources of DON;542
12.9.5.1;Phytoplankton;542
12.9.5.2;Bacteria;542
12.9.5.3;Protists, Zooplankton, and Fish;543
12.9.5.4;Input of DON from Atmosphere, Soil, and Sewage Discharge;543
12.9.5.4.1;Atmosphere;543
12.9.5.4.2;Soil;543
12.9.5.4.3;Sewage;544
12.9.6;Cycling of DON;544
12.9.6.1;Cycling of Specific DON Compounds;544
12.9.6.2;Uptake of DFAA by Bacteria;544
12.9.6.3;Uptake of DFAA by Microalgae;548
12.9.6.4;Uptake of Other Amino Compounds;548
12.9.6.5;Uptake of DCAA;549
12.9.6.6;Uptake of Dissolved DNA;550
12.9.6.7;Uptake of Urea;550
12.9.6.8;Uptake of Total DON;551
12.9.6.9;Bacterial DON Dynamics;551
12.9.7;Appendix: Methods for Studying Cycling of DON Compounds;551
12.9.7.1;Uptake of Single DON Compounds;551
12.9.7.2;Uptake of Polymer DON Compounds;552
12.9.8;Further Reading;553
12.9.9;Relevant Websites;553
12.10;Nutrient Stoichiometry in Aquatic Ecosystems;554
12.10.1;Introduction;554
12.10.2;Stoichiometric Homeostasis;554
12.10.3;Stoichiometry at the Organism Level;555
12.10.4;Primary Producers;555
12.10.5;Zooplankton;556
12.10.6;Other Aquatic Invertebrates;557
12.10.7;Bacteria and Protozoa;558
12.10.8;Fish;558
12.10.9;Food Quality;559
12.10.9.1;Nutrient Recycling;560
12.10.9.2;Community Dynamics;563
12.10.9.3;Whole-System Scale;563
12.10.10;Further Reading;565
12.10.11;Relevant Website;565
12.11;Redox Potential;566
12.11.1;Definitions and General Aspects;566
12.11.2;Measuring the Redox Potential;566
12.11.3;Redox Reactions;567
12.11.4;Redox Potential and Lakes;567
12.11.4.1;Stratified Lakes;567
12.11.4.2;Redox Potential around the Sediment-Water Interface;568
12.11.4.3;Redox Potential and Nutrient Cycling;569
12.11.4.4;Redox Potential and Lake Restoration;570
12.11.5;Redox Potential and Rivers;571
12.11.6;Redox Potential and Wetlands;571
12.11.7;Further Reading;573
13;Pollution and Remediation;574
13.1;Acidification;574
13.1.1;Introduction;574
13.1.2;Chemistry of Acidified Waters and Buffering Mechanisms;574
13.1.2.1;Carbonic Acid and Fresh Water;574
13.1.2.2;Definitions and Dimensions;574
13.1.2.2.1;Alkalinity and acidity;575
13.1.2.2.2;Buffering systems: the weak acids of carbon, aluminum, and iron;575
13.1.2.2.3;Pyrite weathering;577
13.1.2.2.4;Concentrations of dissolved substances in acid waters;577
13.1.3;Types and Extent of Acid Waters;577
13.1.3.1;Atmospheric Deposition and Acid Rain;577
13.1.3.2;Acid Mine Drainage (AMD);580
13.1.3.3;Drainage from Acid Sulfate Soils;580
13.1.3.3.1;The case of western Finland;581
13.1.3.3.2;The case of Australia;581
13.1.3.4;Volcanic Waters and Crater Lakes;581
13.1.4;Biological Effects of Acidification;581
13.1.5;Success of Countermeasures and Long-Term Developments;582
13.1.5.1;Rain-Acidified Waters;582
13.1.5.2;Acid Mine Drainage and Acid Sulfate Soils;582
13.1.5.3;Lake Orta: Acidified by Industrial Waste and Remediated by Liming;583
13.1.6;Conclusions;583
13.1.7;Glossary;583
13.1.8;Further Reading;584
13.1.9;Relevant Websites;585
13.2;Aquatic Ecosystems and Human Health;586
13.2.1;Introduction;586
13.2.2;Physical Threats to Human Health in Inland Waters;586
13.2.3;Waterborne Disease Associated with Inland Waters;586
13.2.4;Sources of Pathogens and Toxins: Pollution in Inland Waters;588
13.2.4.1;Fecal Pollution;588
13.2.4.1.1;Animals (wildlife, farm animals, pets);588
13.2.4.1.2;Animal feeding operations;588
13.2.4.1.3;Humans;589
13.2.4.1.4;Septic tank systems;589
13.2.4.1.5;Wastewater treatment plants;590
13.2.4.1.6;Combined sewer overflows (CSOs) and sanitary sewer overflows (SSOs);590
13.2.4.2;Chemical Toxins and Fish Consumption;590
13.2.4.2.1;Heavy metals;590
13.2.4.2.2;Polychlorinated biphenyls (PCBs);591
13.2.4.2.3;Dichlorodiphenyltrichloroethane (DDT);591
13.2.5;Protecting Human Health;591
13.2.5.1;Water Quality Standards: Monitoring Fresh Waters;591
13.2.5.2;Water Purification and Outdoor Recreation;592
13.2.5.3;General Safety;592
13.2.6;Conclusion;592
13.2.7;Glossary;592
13.2.8;Further Reading;593
13.2.9;Relevant Websites;593
13.3;Bioassessment of Aquatic Ecosystems;594
13.3.1;Why Biological Assessment and What is It?;594
13.3.2;Choices in Approach to Bioassessment;594
13.3.3;History of Bioassessment;596
13.3.3.1;1900-1950;596
13.3.3.2;1950-1970;597
13.3.3.3;1970-2002;597
13.3.4;Types of Bioassessment Studies;598
13.3.5;Biota Used in Bioassessments;598
13.3.6;Examples of Bioassessment Programs - See above in History;599
13.3.7;Further Reading;600
13.4;Deforestation and Nutrient Loading to Fresh Waters;602
13.4.1;Introduction;602
13.4.2;Factors Controlling Nutrient Loading in Fresh Waters;602
13.4.2.1;Dissolved Nutrients;602
13.4.2.2;Nutrients in Particulate Form;602
13.4.3;Effects of Deforestation on the Factors Controlling Freshwater Nutrient Loads;608
13.4.3.1;Dissolved Nutrients;608
13.4.3.1.1;Effects on geological weathering;608
13.4.3.1.2;Effects on atmospheric precipitation/climate;608
13.4.3.1.2.1;Effects on precipitation chemistry and acidity;608
13.4.3.1.2.2;Effects on hydrology;608
13.4.3.1.2.3;Effects on temperature;609
13.4.3.1.3;Effects on terrestrial biological processes;609
13.4.3.1.3.1;Chemical uptake;609
13.4.3.1.3.2;Chemical transformations;609
13.4.3.1.3.3;Production of soluble chemicals;610
13.4.3.1.4;Effects on physical-chemical reactions in the soil;610
13.4.3.1.5;Effects on processes within aquatic ecosystems;610
13.4.3.1.6;Other factors contributing to the variable effects of deforestation on nutrient loading;611
13.4.4;Nutrients in Particulate Form;612
13.4.4.1;Effects on Watershed Topography, Soil Erodibility, Precipitation Characteristics, and Watershed Susceptibility to Mass Wasting;612
13.4.4.2;Effects on Stream-Channel Characteristics;613
13.4.4.3;Effects on Proximity of Vegetation to Surface Water;613
13.4.4.4;Effects on Extent of Roading;613
13.4.5;Conclusions;614
13.4.5.1;Knowledge Gaps;616
13.4.5.2;General Effects of Deforestation on Freshwater Nutrient Loading;616
13.4.6;Further Reading;617
13.4.7;Relevant Websites;617
13.5;Distribution and Abundance of Aquatic Plants - Human Impacts;618
13.5.1;Introduction;618
13.5.2;Eutrophication;618
13.5.2.1;Effects of Increased Nutrients on Primary Producers;618
13.5.2.2;Feedbacks between Plants and Algae and Trophic Interactions;620
13.5.2.3;Effects of Watershed and Shoreline Development on Aquatic Plant Communites;621
13.5.3;Increased Ultraviolet Radiation;621
13.5.4;Acid Rain;621
13.5.5;Chemical Pollutants;622
13.5.6;Increased Carbon Dioxide;622
13.5.6.1;Complex Interactions - Increased CO2, Acidification and Eutrophication;622
13.5.6.2;Complex Interactions - Plants, Algae, Nutrients, Carbon and Consumers;623
13.5.7;Invasive Species Introductions;623
13.5.8;Aquatic Plant Management Activities;623
13.5.8.1;Mechanical Control;624
13.5.8.2;Physical Control;624
13.5.8.3;Biological Control;624
13.5.8.4;Chemical Control;624
13.5.9;Conclusion;626
13.5.10;Further Reading;626
13.6;Effects of Climate Change on Lakes;628
13.6.1;Introduction;628
13.6.2;Physical Effects of Climate Change;628
13.6.2.1;Basin Integrity;628
13.6.2.2;Water Balance;629
13.6.2.3;Ice Cover;629
13.6.2.4;Temperature and Stratification;630
13.6.3;Chemical Effects of Climate Change;630
13.6.3.1;In-Lake Effects;630
13.6.3.2;Catchment Effects;631
13.6.4;Biological Effects of Climate Change;631
13.6.4.1;Ecosystem Integrity;631
13.6.4.2;Vertical Habitat Structure;631
13.6.4.3;Photosynthetic Communities;632
13.6.4.4;Fish Communities and Migration;632
13.6.4.5;Microbial Processes;633
13.6.5;Further Reading;633
13.7;Eutrophication;634
13.7.1;Introduction;634
13.7.2;Origins and Evolution of the Eutrophication Concept;634
13.7.3;Current Understanding and Management of Eutrophication;634
13.7.3.1;Sources of Nutrients to Inland Surface Waters;634
13.7.3.2;Nitrogen and Phosphorus are Essential Growth- Limiting Nutrients;637
13.7.3.3;Nutrient Loading Models;637
13.7.3.4;Effects of Eutrophication on Water Quality;638
13.7.3.5;Factors that Modify the Local Expression of Eutrophication;638
13.7.3.5.1;Effects of salinity;638
13.7.3.5.2;Effects of inorganic turbidity and dissolved organic color;638
13.7.3.5.3;Effects of hydrology;640
13.7.3.5.4;Effects of vascular plants (macrophyte vegetation);640
13.7.3.5.5;Effects of food web structure;640
13.7.3.5.6;Alternative stable states;641
13.7.3.5.7;Correcting the problem: Eutrophication control, restoration, and management;642
13.7.4;Conclusions;642
13.7.5;Knowledge Gaps;642
13.7.5.1;Causes and Composition of Harmful Algal Blooms;642
13.7.5.2;Health Risks;644
13.7.5.3;Interactions with other Pollutants and Environmental Stressors;644
13.7.5.4;General Effects of Eutrophication;644
13.7.6;Glossary;645
13.7.7;Further Reading;645
13.7.8;Relevant Websites;646
13.8;Fires;647
13.8.1;Introduction;647
13.8.2;The Structure of Wildfire;647
13.8.2.1;Fire Intensity;647
13.8.2.2;Fire Severity;647
13.8.2.3;Fire Size;648
13.8.2.4;Fire Frequency;648
13.8.3;Wildfires as an Ecological Impact on Aquatic Systems;648
13.8.4;Pre-Fire Considerations;649
13.8.4.1;Watershed Slope;650
13.8.4.2;Catchment Size;650
13.8.4.3;System Morphology;650
13.8.4.4;Soil Characteristics;650
13.8.4.5;Baseline Water Chemistry;650
13.8.4.6;Weather Patterns;650
13.8.4.7;Timing;651
13.8.4.8;Fuel Load and Forest Age;651
13.8.4.9;Canopy Type;651
13.8.5;Post-Fire Impacts;651
13.8.5.1;Immediate Effects: 0-5 Years;651
13.8.5.1.1;Nutrient cycling;651
13.8.5.1.2;Infiltration and runoff;652
13.8.5.1.3;Sedimentation and erosion;653
13.8.5.1.4;Biota;653
13.8.5.2;Intermediate Effects: up to 10 Years;658
13.8.5.2.1;Nutrient cycling;658
13.8.5.2.2;Infiltration and runoff;658
13.8.5.2.3;Sedimentation;658
13.8.5.2.4;Biota;658
13.8.5.3;Long-Term Effects: 10{\tf=;658
13.8.6;Summary;659
13.8.7;Glossary;660
13.8.8;Further Reading;660
13.8.9;Relevant Websites;660
13.9;Floods;661
13.9.1;Definition of Flood;661
13.9.2;Causes and Effects of Floods;661
13.9.3;Flood Costs and Mitigation;663
13.9.4;Further Reading;664
13.10;Mercury Pollution in Remote Fresh Waters;665
13.10.1;Introduction;665
13.10.2;The Distribution of Mercury in Fresh.Waters;665
13.10.2.1;Lake Water and Sediments;665
13.10.3;Hypolimnetic Enrichment;665
13.10.4;Seasonality;666
13.10.5;Biota;667
13.10.6;Mass Balances for Mercury;669
13.10.6.1;Annual Budgets for Total Mercury;669
13.10.6.2;Seasonal Budgets for Methylmercury;670
13.10.7;Methylation Pathways;671
13.10.8;Hg(II) Methylation;672
13.10.9;MeHg Demethylation;672
13.10.10;The Aquatic Mercury Cycle;672
13.10.11;Remediation Strategies;673
13.10.12;Further Reading;674
13.11;Pollution of Aquatic Ecosystems I;675
13.11.1;Introduction;675
13.11.2;The Evolution of Human Societies and Water Pollution;675
13.11.3;Identifying Sources of Pollution;675
13.11.3.1;Point Source Pollution;676
13.11.3.2;Nonpoint Source Pollution;677
13.11.4;Specific Sources of Aquatic Pollution;677
13.11.5;Oxygen Demand in Aquatic Ecosystems;679
13.11.5.1;Chemical Oxygen Demand;680
13.11.5.2;Biological Oxygen Demand;681
13.11.5.3;Factors Affecting Oxygen Demand;681
13.11.5.4;Restoration Techniques to Avoid Low Oxygen;681
13.11.6;Nutrients in Aquatic Ecosystems;682
13.11.6.1;Eutrophication, Supply Ratios, and Species Composition;682
13.11.6.2;Other Consequences of Eutrophication;683
13.11.6.3;Reducing Nutrients in Aquatic Ecosystems;683
13.11.7;Restoring Aquatic Ecosystems;683
13.11.8;Conclusions;683
13.11.9;Glossary;684
13.11.10;Further Reading;684
13.11.11;Relevant Websites;684
13.12;Pollution of Aquatic Ecosystems II: Hydrocarbons, Synthetic Organics, Radionuclides, Heavy Metals, Acids, and Thermal Pollution;685
13.12.1;Introduction;685
13.12.2;Hydrocarbons;685
13.12.2.1;Organic Solvents;685
13.12.2.2;Petroleum Hydrocarbon Oils;685
13.12.2.3;Polycyclic Aromatic Hydrocarbons;686
13.12.3;Synthetic Organic Chemicals;687
13.12.3.1;Polychlorinated Biphenyls;687
13.12.3.2;Polybrominated Diphenyl Ethers;688
13.12.3.3;Pesticides;688
13.12.3.4;Unwanted Waste Byproducts;689
13.12.3.5;Chemicals of Emerging Concern;689
13.12.4;Heavy Metals;691
13.12.4.1;Mercury;691
13.12.4.2;Other Toxic Elements;692
13.12.5;Radionuclides;692
13.12.6;Thermal Pollution;693
13.12.7;Further Reading;693
13.12.8;Relevant Websites;693
13.13;Vector-Borne Diseases of Freshwater Habitats;694
13.13.1;Introduction;694
13.13.2;Human Diseases and Freshwater Vectors;694
13.13.3;Insect Vectors of Human Disease;695
13.13.4;Snails and Crustacenas as Intermediate Hosts of Human Disease;696
13.13.5;Habitats of Human-Disease Vectors;697
13.13.6;Vector Control Strategies;698
13.13.7;Human Culture, Freshwater Vectors and Disease;700
13.13.8;Glossary;701
13.13.9;Further Reading;702
14;Subject Index;704
Contributors
J.H. Aldstadt, III University of Wisconsin-Milwaukee, Milwaukee, WI, USA W.M. Alley U.S. Geological Survey, San Diego, CA, USA J.L. Ammerman SEAL Analytical, Inc., Mequon Technology Center, Mequon, WI, USA J.P. Antenucci University of Western Australia, Nedlands, WA, Australia J.F. Atkinson University of Buffalo, Buffalo, NY, USA D.L. Bade Kent State University, Kent, OH, USA M.T. Barbour Tetra Tech, Owings Mills, MD, USA D. Bastviken Stockholm University, Stockholm, Sweden L. Boegman Queen’s University, Kingston, ON, Canada B. Boehrer UFZ – Helmholtz Centre for Environmental, Research, Magdeburg, Germany H.A. Bootsma University of Wisconsin-Milwaukee, Milwaukee, WI, USA P.A. Bukaveckas Virginia Commonwealth University, Richmond, VA, USA N. Caraco Cary Institute of Ecosystem Studies, Millbrook, NY, USA M.J. Coates Deakin University, Warrnambool, Vic., Australia J.J. Cole Cary Institute of Ecosystem Studies, Millbrook, NY, USA D.J. Conley Lund University, Lund, Sweden C.S. Cronan University of Maine, Orono, ME, USA E.A. Dreelin Michigan State University, East Lansing, MI, USA K.R. Echols US Geological Survey, Columbia, MO, USA M.C. Feller University of British Columbia, Vancouver, BC, Canada K. Fienberg University of Minnesota, Minneapolis, MN, USA A.M. Folkard Lancaster University, Lancaster, UK E. Foufoula-Georgiou University of Minnesota, Minneapolis, MN, USA W. Geller UFZ – Helmholtz Center for Environmental, Research, Magdeburg, Germany A.E. Giblin Marine Biological Laboratory, Woods Hole, MA, USA C. Gilmour Smithsonian Environmental Research Center, Edgewater, MD, USA D.S. Glazier Juniata College, Huntingdon, PA, USA C.R. Goldman University of California, Davis, CA, USA E.M. Gross University of Konstanz, Konstanz, Germany G. Harris Lancaster University, UK J. Hauxwell DNR Science Operations Center, Madison, WI, USA B.R. Hodges University of Texas at Austin, Austin, TX, USA G. Hornberger Vanderbilt University, Nashville, TN, USA R. Howarth Cornell University, Ithaca, NY, USA J.A. Hubbart University of Missouri, Columbia, MO, USA J.R. Jones University of Missouri, Columbia, MO, USA N.O.G. Jørgensen University of Copenhagen, Fredericksberg, Denmark P.Y. Julien Colorado State University, Fort Collins, CO, USA G. Katul Duke University, Durham, NC, USA S.S. Kaushal University of Maryland Center for Environmental Science, Solomons, MD, USA R. Kipfer Swiss Federal Institute of Environmental Science and Technology (Eawag), Swiss Federal Institute of Technology (ETH), Ueberlandstr, Duebendorf, Switzerland S. Knight University of Wisconsin Trout Lake Station and Wisconsin Department of Natural Resources, Boulder Junction, WI, USA H.-P. Kozerski Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany J.W. LaBaugh U.S. Geological Survey, Reston, VA, USA W.M. Lewis University of Colorado, Boulder, CO, USA A. Lorke University of Koblenz-Landau, Landau/Pfaly, Germany S. MacIntyre University of California, Santa Barbara, CA, USA R.W. Marino Cornell University, Ithaca, NY, USA M.D. Mattson Massachusetts Department of Environmental Protection, Worcester, MA, USA R.M. McNinch Michigan State University, East Lansing, MI, USA J.C. Meadows US Geological Survey, Columbia, MO, USA R. Menzel Humboldt Universität zu Berlin, Berlin, Germany M. Meybeck Université Pierre et Marie Curie, Paris, France E. Michael Perdue Georgia Institute of Technology, Atlanta, GA, USA S.G. Monismith Stanford University, Stanford, CA, USA T.N. Narasimhan University of California at Berkeley, CA, USA H.M. Nepf Massachusetts Institute of Technology, Cambridge, MA, USA J.R. Nimmo U.S. Geological Survey, Menlo Park, CA, USA R.H. Norris University of Canberra, Canberra, ACT, Australia K. Novick Duke University, Durham, NC, USA Y. Olsen Norwegian University of Science and Technology, Trondheim, Norway C.E. Orazio US Geological Survey, Columbia, MO, USA F. Peeters Universität Konstanz, Mainaustrasse, Konstanz, Germany Y.T. Prairie Université du Québec à Montréal, Montréal, QC, Canada E. Prepas Lakehead University, Thunder Bay, ON, Canada G. Putz Lakehead University, Thunder Bay, ON, Canada V.H. Resh University of California, Berkeley, CA, USA C.S. Reynolds Centre of Ecology and Hydrology and Freshwater Biological Association, Cumbria, UK B.L. Rhoads University of Illinois at Urbana-Champaign, Urbana, IL, USA G. Riedel Smithsonian Environmental Research Center, Edgewater, MD, USA J.B. Rose Michigan State University, East Lansing, MI, USA F.J. Rueda Universidad de Granada, Granada, Spain M. Schultze UFZ – Helmholtz Center for Environmental Research, Magdeburg, Germany N. Serediak Lakehead University, Thunder Bay, ON, Canada R.W....