Design and Materials
Buch, Englisch, 544 Seiten
ISBN: 978-1-394-31735-6
Verlag: John Wiley & Sons Inc
Thermoelectrics provides an introduction to the fundamental theories in the fast developing and interdisciplinary field of thermoelectrics. The topics covered are in sync with contemporary technology advancement happenings within the TEC/TEG electronics cooling community and include discussion of challenges and concerns surrounding practical applications.
The first section covers thermoelectric generators and coolers (refrigerators) before examining optimal design with dimensional analysis. A number of applications are considered, including solar thermoelectric generators, thermoelectric air conditioners and refrigerators, thermoelectric coolers for electronic devices, thermoelectric compact heat exchangers, and biomedical thermoelectric energy harvesting systems. The second section focuses on materials and covers the physics of electrons and phonons, theoretical modeling of thermoelectric transport properties, thermoelectric materials, and nanostructures.
In this Second Edition, many new examples and end-of-chapter problems have been added. New results from the theories have been added in certain chapters, along with new design charts and many examples showing how to use the charts. A companion website hosts solution manuals and appendices.
Sample topics covered in Thermoelectrics include: - Thermoelectric effects, including the Seebeck, Peltier, and Thomson effects as well as Thomson/Kelvin relationships
- Performance, maximum, abnormal parameters for thermoelectric modules as well as effective material properties
- Thermal and electrical contact resistances for micro and macro devices, with information on modeling and validation
- Thermoelectric transport properties, covering Seebeck coefficient, electrical conductivity, lattice and electronic thermal conductivities
- Low-dimensional nanostructures, covering quantum wells, wires, and dots and supporting proof-of-principle studies
Thermoelectrics is an ideal resource on the fundamentals of the subject for professionals in the electronics cooling industry, solid state physicists, and materials scientists and engineers. It is also a valuable reference for early career scientists and undergraduate and graduate students in related programs of study.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Preface to the Second Edition xvii
Preface to the First Edition xix
About the Companion Website xxi
1 Introduction 1
1.1 Introduction 1
1.2 Thermoelectric Effect 3
1.2.1 Seebeck Effect 3
1.2.2 Peltier Effect 4
1.2.3 Thomson Effect 4
1.2.4 Thomson (or Kelvin) Relationships 4
1.3 The Figure of Merit 5
1.3.1 New Generation Thermoelectrics 5
Problems 7
References 8
2 Thermoelectric Generators 9
2.1 Ideal Equations 9
2.2 Performance Parameters of a Thermoelectric Module 12
2.3 Maximum Parameters for a Thermoelectric Module 13
2.4 Normalized Parameters 14
Example 2.1 Estimate Heat Flow 16
Example 2.2 Using Ideal Equations 18
2.5 Effective Material Properties 20
2.6 Comparison of Calculations with a Commercial Product 21
Example 2.3 Exhaust Waste Heat Recovery 24
2.7 Figure of Merit and Optimum Geometry 26
Problems 27
References 30
3 Thermoelectric Coolers and Heat Pumps 31
3.1 Ideal Equations 31
3.2 Maximum Parameters 34
3.3 Normalized Parameters for Thermoelectric Coolers 36
Example 3.1 Thermoelectric Cooler 39
3.4 Normalized Parameters for Thermoelectric Heat Pumps 40
Example 3.2 Thermoelectric Heat Pump 42
Example 3.3 Thermoelectric Cooler and Heat Pump 44
Example 3.4 Thermoelectric Air Conditioner 46
3.5 Effective Material Properties 50
3.6 Comparison of Calculations with a Commercial Product 51
3.7 Multistage Modules 52
3.7.1 Commercial Multistage Peltier Modules 55
Problems 55
References 58
4 Optimal System Design 59
4.1 Introduction 59
4.2 Optimal System Design for Thermoelectric Generators 59
4.2.1 Basic Equations 59
4.2.2 Instability and Maximum Efficiency 62
4.2.3 Dimensionless Characteristics 64
4.2.4 Effect of Convection Conductance 66
4.2.5 Dimensionless Characteristics 67
Example 4.1 Waste Heat Recovery System 70
Example 4.2 Thermoelectric Generator System in a Nuclear Reactor 75
Example 4.3 Thermoelectric Generator on a Wood Stove 78
4.3 Thermoelectric Generator System with Thermal Radiation 81
4.3.1 Dimensional Analysis 82
4.3.2 Instability and Maximum Efficiency with Radiation 84
4.3.3 Dimensionless Characteristics 85
4.3.4 Heat Flux Conversion to Dimensionless Surrounding Temperature 86
Example 4.4 Thermoelectric Generator System for an Offshore Fusion Nuclear Reactor 88
4.4 Optimal System Design of Thermoelectric Coolers and Heat Pumps 92
4.4.1 Basic Equations 92
4.4.2 Instability 94
4.4.3 Dimensionless Optimal Cooling Power 95
4.4.4 Effect of Convection Conductance N h
97
4.4.5 Dimensionless Characteristics for Optimal Cooling and Half Optimal Cooling 99
Example 4.5 Thermoelectric Cooler System 102
4.4.6 Micro Cooler System 107
Example 4.6 Micro Cooling System 108
4.4.7 Thermoelectric Heat Pumps 112
4.4.8 Heat Sinks Without Thermoelectric Cooler 112
Example 4.7 Thermoelectric Cooler and Heat Pump 115
4.5 Thermoelectric Cooler System with Heat Flux 120
4.5.1 Basic Equations 120
4.5.2 Dimensional Analysis 121
4.5.3 Instability 122
4.5.4 Optimal Cooling 123
4.5.5 Dimensionless Characteristics 123
Example 4.8 Thermoelectric Cooler System with Heat Flux 126
Example 4.9 Isotherm Instrument 130
Example 4.10 Car Seat Climate Control 135
Problems 140
Thermoelectric Generator System 140
Computer Programming 147
Thermoelectric Cooler System 149
Computer Programming 154
Projects 154
References 156
5 Thomson Effect, Exact Solution, and Compatibility Factor 159
5.1 Thermodynamics of the Thomson Effect 159
5.1.1 Seebeck Effect 159
5.1.2 Peltier Effect 159
5.1.3 Thomson Effect 160
5.1.4 Thomson (or Kelvin) Relationships 161
5.2 Exact Solutions 163
5.2.1 Equations for the Exact Solutions and the Ideal Equation 163
5.2.2 Thermoelectric Generator 165
5.2.3 Thermoelectric Coolers 166
5.3 Compatibility Factor 168
5.3.1 Reduced Current Density 168
5.3.2 Heat Balance Equation 169
5.3.3 Numerical Solution 169
5.3.4 Infinitesimal Efficiency 170
5.3.5 Reduced Efficiency 170
5.3.6 Reduced Efficiency 170
5.3.7 Compatibility Factor 171
5.3.8 Segmented Thermoelements 171
5.3.9 Thermoelectric Potential 173
5.4 Thomson Effect 174
5.4.1 Formulation of Basic Equations 175
5.4.2 Numeric Solutions of the Thomson Effect 178
5.4.3 Comparison Between the Thomson Effect and Ideal Equation 180
Problems 183
References 183
6 Thermal and Electrical Contact Resistances for Micro and Macro Devices 185
6.1 Modeling and Validation 185
6.1.1 Cancellation of Spreading Resistance with Thermal Contact Resistance 186
6.1.2 Thermoelectric Coolers 187
6.1.3 Thermoelectric Generators 187
6.1.4 Validation of Model 187
6.2 Micro and Macro Thermoelectric Coolers 188
6.2.1 Effect of Leg Length 190
6.2.2 Effect of Material on Ceramic Plate 191
6.3 Micro and Macro Thermoelectric Generators 191
6.3.1 Model and Verification for Macro TE Generators 191
6.3.2 Effect of Load Resistance 191
6.3.3 Effect of Leg Length and Ceramic Material 194
Problems 194
References 195
7 Modeling of Thermoelectric Generators and Coolers with Heat Sinks 197
7.1 Modeling of Thermoelectric Generators with Heat Sinks 197
7.1.1 Modeling 197
7.2 Plate-Fin Heat Sinks 206
7.2.1 Nusselt Number for Air 207
7.2.2 Turbulent Flow for Gases and Liquids 208
7.2.3 Optimal Design of Heat Sink 208
7.2.4 Single Fin Efficiency 209
7.2.5 Overall Fin Efficiency 210
7.3 Modeling of Thermoelectric Coolers with Heat Sinks 210
7.3.1 Modeling 210
Problems 218
References 218
8 Applications 219
8.1 Exhaust Waste Heat Recovery 219
8.1.1 Recent Studies 219
8.1.2 Modeling of Module Tests 221
8.1.3 Modeling of TEG 226
8.1.4 New Design of TEG 234
8.2 Solar Thermoelectric Generators (STEGs) 237
8.2.1 Recent Studies 237
8.2.2 Modeling of a STEG 238
8.2.3 Optimal Design of STEG (Dimensional Analysis) 246
8.2.4 New Design of STEG 248
8.3 Automotive Thermoelectric Air Conditioner (TEAC) 251
8.3.1 Recent Studies 251
8.3.2 Modeling of Air-to-Air TEAC 254
8.3.3 Optimal Design of TEAC 260
8.3.4 New Design of TEAC 262
Problems 266
References 267
9 Crystal Structure 269
9.1 Atomic Mass 269
9.1.1 Avogadro’s Number 269
Example 9.1 Mass of One Atom 269
9.2 Unit Cells of a Crystal 269
9.2.1 Bravais Lattices 272
Example 9.2 Gold Au Forms an FCC Unit Cell. Its Atomic Radius is 1.44 Å. Calculate the Lattice Constant of the Gold, and Also Calculate the Density of Gold 274
9.3 Crystal Planes 275
Example 9.3 Indices of a Plane 276
Problems 277
References 277
10 Physics of Electrons 279
10.1 Quantum Mechanics 279
10.1.1 Electromagnetic Wave 279
10.1.2 Atomic Structure 281
10.1.3 Bohr’s Model 282
10.1.4 Line Spectra 283
10.1.5 De Broglie Wave 285
10.1.6 Heisenberg Uncertainty Principle 285
10.1.7 Schrödinger Equation 286
10.1.8 A Particle in a One-Dimensional Box 286
10.1.9 Quantum Numbers 289
10.1.10 Electron Configurations 291
Example 10.1 Electronic Configuration of a Silicon Atom 292
10.2 Band Theory and Doping 293
10.2.1 Covalent Bonding 293
10.2.2 Energy Band 294
10.2.3 Pseudo-Potential Well 295
10.2.4 Doping, Donors, and Acceptors 295
Problems 296
References 297
11 Density of States, Fermi Energy, and Energy Bands 299
11.1 Current and Energy Transport 299
11.2 Electron Density of States 300
11.2.1 Dispersion Relation 300
11.2.2 Effective Mass 300
11.2.3 Density of States 301
11.3 Fermi–Dirac Distribution 303
11.4 Electron Concentration 304
11.5 Fermi Energy in Metals 305
Example 11.1 Fermi Energy in Gold 306
11.6 Fermi Energy in Semiconductors 307
Example 11.2 Fermi Energy in Doped Semiconductors 308
11.7 Energy Bands 309
11.7.1 Multiple Bands 310
11.7.2 Direct and Indirect Semiconductors 310
11.7.3 Periodic Potential (Kronig–Penney Model) 311
Problems 317
References 318
12 Thermoelectric Transport Properties for Electrons 319
12.1 Boltzmann Transport Equation 319
12.2 Semiclassical Model of Metals 321
12.2.1 Electric Current Density 321
12.2.2 Electrical Conductivity 321
Example 12.1 Electron Relaxation Time of Gold 323
12.2.3 Seebeck Coefficient 323
Example 12.2 Seebeck Coefficient of Gold 325
12.2.4 Electronic Thermal Conductivity 325
Example 12.3 Electronic Thermal Conductivity of Gold 326
12.3 Power-Law Model for Metals and Semiconductors 326
12.3.1 Equipartition Principle 327
12.3.2 Parabolic Single-Band Model 328
Example 12.4 Seebeck coefficient of PbTe 330
Example 12.5 Material Parameter 334
12.4 Hall Effect 335
12.5 Electron Relaxation Time 339
12.5.1 Acoustic Phonon Scattering 339
12.5.2 Polar Optical Phonon Scattering 339
12.5.3 Ionized Impurity Scattering 340
12.5.4 Comparison Between the Semiclassical Model and Experiments 340
Example 12.6 Electron Mobility and Electrical Conductivity 340
12.6 Multiband Effects 342
12.7 Nonparabolicity 343
12.8 Comparison Between the Semiclassical Model and Experiments 346
Problems 348
Computer Program 349
References 349
13 Phonons 351
13.1 Vibration of Lattice 351
13.2 Crystal Vibration 351
13.2.1 One Atom in a Primitive cell 351
13.2.2 Two Atoms in a Unit cell 354
13.3 Specific Heat 356
13.3.1 Internal Energy 356
13.3.2 Debye Model 357
Example 13.1 Atomic Size and Specific Heat 361
13.4 Lattice Thermal Conduction 363
13.4.1 Debye–Callaway Model 363
13.4.2 Umklapp Processes 366
13.4.3 Callaway Model 366
13.4.4 Phonon Relaxation Times 368
Example 13.2 Lattice Thermal Conductivity 371
13.4.5 Lower Limit of Thermal Conductivity 372
Problems 373
References 375
14 Low-Dimensional Nanostructures 377
14.1 Low-Dimensional Systems 377
14.1.1 Quantum Well (2D) 377
Example 14.1 Energy Levels of a Quantum Well 381
14.1.2 Quantum Wires (1D) 382
14.1.3 Quantum Dots (0D) 384
14.1.4 Thermoelectric Transport Properties of Quantum Wells 386
14.1.5 Thermoelectric Transport Properties of Quantum Wires 387
14.1.6 Proof-of-Principle Studies 388
Problems 390
References 391
15 Generic Model of Bulk Silicon and Nanowires 393
15.1 Electron Density of States for Bulk and Nanowires 393
15.1.1 Density of States 393
15.2 Carrier Concentrations for Two-band Model 393
15.2.1 Bulk 393
15.2.2 Nanowires 394
15.2.3 Bipolar Effect and Fermi Energy 394
15.3 Electron Transport Properties for Bulk and Nanowires 394
15.3.1 Electrical Conductivity 394
15.3.2 Seebeck Coefficient 395
15.3.3 Electronic Thermal Conductivity 395
15.4 Electron Scattering Mechanisms 396
15.4.1 Acoustic-Phonon Scattering 396
15.4.2 Ionized Impurity Scattering 396
15.4.3 Polar Optical Phonon Scattering 397
15.4.4 Total Electron Relaxation Time 398
15.5 Lattice Thermal Conductivity 398
15.6 Phonon Relaxation Time 398
15.7 Input Data for Bulk Si and Nanowires 399
15.8 Bulk Si 399
15.8.1 Fermi Energy 400
15.8.2 Electron Mobility 401
15.8.3 Thermoelectric Transport Properties 401
15.8.4 Dimensionless Figure of Merit 402
15.9 Si Nanowires 403
15.9.1 Electron Properties 403
15.9.2 Phonon Properties for Si Nanowires 407
Problems 410
References 410
16 Theoreical Model of Thermoelectric Transport Properties 413
16.1 Introduction 413
16.2 Theoretical Equations 414
16.2.1 Carrier Transport Properties 414
16.2.2 Scattering Mechanisms for Electron Relaxation Times 417
16.2.3 Lattice Thermal Conductivity 419
16.2.4 Phonon Relaxation Times 420
16.2.5 Phonon Density of States and Specific Heat 422
16.2.6 Dimensionless Figure of Merit 422
16.3 Results and Discussion 423
16.3.1 Electron or Hole Scattering Mechanisms 423
16.3.2 Transport Properties 427
16.4 Summary 446
Problems 446
References 447
Appendix A Thermophysical Properties 453
Appendix B 475
Appendix C Fermi Integral 483
Appendix D Periodic Table 487
Appendix G Conversion Factors 503
Index 507