Buch, Englisch, Band 12, 292 Seiten, Paperback, Format (B × H): 127 mm x 203 mm, Gewicht: 329 g
Reihe: Progress in Nonlinear Differential Equations and Their Applications
Euler International Mathematical Institute, St. Petersburg, 1991
Buch, Englisch, Band 12, 292 Seiten, Paperback, Format (B × H): 127 mm x 203 mm, Gewicht: 329 g
Reihe: Progress in Nonlinear Differential Equations and Their Applications
ISBN: 978-3-0348-7517-2
Verlag: Birkhäuser Basel
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
I. KAM theory and related topics.- 1. The dynamical foundation of classical statistical mechanics and the Boltzmann-Jeans conjecture.- 2. Stability of nearly integrable convex hamiltonian system over exponentially long times.- 3. On the stability problem for nearly-integrable hamiltonian systems.- 4. Separatrices splitting for the rapidly forced pendulum.- 5. Exponentially small expressions for separatrix splitting.- 6. An unusual variational problem connected with Mather’s theory for monotone twist mappings.- 7. Periodic Metrics.- 8. On the inclusion of analytic symplectic maps in analytic hamiltonian flows and its applications.- 9.Poincaré Compacti-fication of the Kepler and the collinear three body problems.- 10. A note on the existence of heteroclinic orbits in the planar three-body problem.- 11. KAM tori for modulated symplectic maps.- 12. Analyticity of normalizing transformations for area preserving maps.- 13. On the frequencies of quasi-periodic solutions of analytic nearly integrable hamiltonian systems.- 14. New results in the reversible KAM theory.- II. Infinite dimensional dynamical systems.- 15. Maximal almost periodic solutions for Lagrangian equations on infinite dimensional tori.- 16. Nonpersistence of breather solutions under perturbation of the Sine-Gordon equation.- III. Miscellanea.- 17. Attractors, integrable hamiltonian systems and the Reidemeister torsion.- 18. Linear connections for hamiltonian dynamics over isotropic submanifold.- 19. Four-dimensional integrable hamiltonian systems with simple singular points.- 20. Periodic points and Symbolic Dynamics.- 21. On the perturbation of locally non-unique invariant manifolds.- 22. Complex geometry of the billiard on the ellipsoid and quasicristallic curves.