Buch, Englisch, 272 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 492 g
Techniques and Applications
Buch, Englisch, 272 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 492 g
ISBN: 978-0-470-09065-7
Verlag: Wiley
Eine ganz moderne Einfuhrung in die chemische Bilogie! Modular gegliedert ordnet der Band Arbeitstechniken aus der Physik und physikalischen Chemie den Anwendungen in der Biologie und Biomedizin zu. Hilfsmittel und Verfahren werden nicht auf zu hohem Niveau erlautert, interessante Beispiele aus der Praxis der chemischen Biologie runden jedes Kapitel ab.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Chemie Chemie Allgemein Chemische Labormethoden, Stöchiometrie
- Naturwissenschaften Chemie Chemie Allgemein Pharmazeutische Chemie, Medizinische Chemie
- Naturwissenschaften Chemie Chemie Allgemein Toxikologie, Gefahrstoffe, Sicherheit in der Chemie
- Naturwissenschaften Chemie Chemie Allgemein Chemometrik, Chemoinformatik
Weitere Infos & Material
Preface
List of Contributors
1. Introduction
1.1 Chemical biology - the present
1.2 Chemical biology - the past
1.3 Chemical biology - the future
1.4 Chemical biology - mind the interdisciplinary gap
1.5 An introduction to the following chapters
2. Cryomicroscopy
2.1 The need for (electron) microscopy
2.2 Development of cryomicroscopy
2.3 Sample-electron interaction
2.4 Contrast in negatively stained and cryo preparations
2.5 Image formation
2.6 Image analysis
2.7 Software used in the analysis of electron micrographs
2.8 Examples
2.9 Conclusions
3. Atomic force microscopy: applications in biology
3.1 A brief history of microscopy
3.2 The scanning pribe microscope revolution
3.3 The workings of an AFM instrument
3.4 Imaging biological molecules with force
3.5 Factors influencing image quality
3.6 Biological applications of AFM and recent developments
3.7 Conclusions and future directions
4. Differential scanning calorimetry in the study of lipid structures
4.1 Introduction
4.2 Membranes, lipids and lipid phases
4.3 Heat exchanges and calorimetry
4.4 Phase transitions in pure lipid-water systems
4.5 Selected examples of transitions in lipid mixtures
4.6 Complex systems: lipid-protein mixtures and cell membranes
4.7 Conclusion
5. Membrane potentials and membrane probes
5.1 Introduction: biological membranes; structure and electrical properties
5.2 Phospholipid membranes as molecular environments
5.3 The physical origins of the transmembrane (DeltaPsi), surface (phiS) and dipolar (phiD) membrane potentials
5.4 Measurement of membrane potentials
5.5 Problems with Spectroscopic Measurements of Membrane Potentials
5.6 Spatial Imaging of membrane potentials
6. Identification and quantification of lipids using mass spectrometry
6.1 Introduction
6.2 Lipid analysis by mass spectrometry
6.3 Conclusion
7. Liquid-state NMR
7.1 Introduction
7.2 How NMR works: the basics
7.3 Some NMR applications in biology
7.4 Conclusion
8. Solid-state NMR in biomembranes
8.1 Introduction
8.2 NMR basics for membrane systems
8.3 Applications of wide-line NMR to membrane systems
8.4 Applications of MAS to biomembranes and natural colloids
8.5 Conclusion
9. Molecular dynamics
9.1 Introduction
9.2 The basis of molecular mechanics
9.3 The basis of molecular dynamics
9.4 Factors affecting the length of simulations
9.5 Problems caused by solvents
9.6 How to build a lipid bilayer for simulation purposes
9.7 Special cases of membrane proteins
9.8 Summary
10. Two-dimensional infrared studies of biomolecules
10.1 Introduction
10.2 Description of the technique
10.3 Spectral simulations
10.4 Two-dimensional studies of human lipoproteins
10.5 Summary
11. Biological applications of single- and two-photon fluorescence
11.1 Introduction
11.2 Basic principles of fluorescence
11.3 Main principles of RET via single-photon excitation
11.4 Detection of RET
11.5 Biological examples of RET monitored by frequency-domain FLIM
11.6 Two-photon fluorescence
11.7 Applications of two-photon fluorescence
11.8 Photoselection and fluorescence anisotropy
11.9 Fluorescence anisotropy and isotropic rotational diffusion
11.10 Fluorescent probes in proteins and membranes
11.11 Future developments
11.12 Conclusions
12. Optical tweezers
12.1 Introduction
12.2 Theoretical background
12.3 Apparatus
12.4 Data collection and analysis
12.5 A biological application
12.6 Other biological examples
12.7 Summary
13. PET imaging in chemical biology
13.1 Introduction
13.2 Positron emission tomography: principles and instrumentation
13.3 Applications of PET imaging in the biomedical sciences
13.4 Conclusions and outlook
14. Chemical genetics
14.1 Introduction
14.2 Why chemicals?
14.3 Chemical genetics - why now?
14.4 The relationship between classical genetics and chemical genetics
14.5 Forward chemical genetics
14.6 Reverse chemical genetics
14.7 Closing remarks
Index