Larijani / Rosser / Woscholski | Chemical Biology | Buch | 978-0-470-09065-7 | sack.de

Buch, Englisch, 272 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 492 g

Larijani / Rosser / Woscholski

Chemical Biology

Techniques and Applications
1. Auflage 2006
ISBN: 978-0-470-09065-7
Verlag: Wiley

Techniques and Applications

Buch, Englisch, 272 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 492 g

ISBN: 978-0-470-09065-7
Verlag: Wiley


Eine ganz moderne Einfuhrung in die chemische Bilogie! Modular gegliedert ordnet der Band Arbeitstechniken aus der Physik und physikalischen Chemie den Anwendungen in der Biologie und Biomedizin zu. Hilfsmittel und Verfahren werden nicht auf zu hohem Niveau erlautert, interessante Beispiele aus der Praxis der chemischen Biologie runden jedes Kapitel ab.

Larijani / Rosser / Woscholski Chemical Biology jetzt bestellen!

Weitere Infos & Material


Preface

List of Contributors

1. Introduction

1.1 Chemical biology - the present

1.2 Chemical biology - the past

1.3 Chemical biology - the future

1.4 Chemical biology - mind the interdisciplinary gap

1.5 An introduction to the following chapters

2. Cryomicroscopy

2.1 The need for (electron) microscopy

2.2 Development of cryomicroscopy

2.3 Sample-electron interaction

2.4 Contrast in negatively stained and cryo preparations

2.5 Image formation

2.6 Image analysis

2.7 Software used in the analysis of electron micrographs

2.8 Examples

2.9 Conclusions

3. Atomic force microscopy: applications in biology

3.1 A brief history of microscopy

3.2 The scanning pribe microscope revolution

3.3 The workings of an AFM instrument

3.4 Imaging biological molecules with force

3.5 Factors influencing image quality

3.6 Biological applications of AFM and recent developments

3.7 Conclusions and future directions

4. Differential scanning calorimetry in the study of lipid structures

4.1 Introduction

4.2 Membranes, lipids and lipid phases

4.3 Heat exchanges and calorimetry

4.4 Phase transitions in pure lipid-water systems

4.5 Selected examples of transitions in lipid mixtures

4.6 Complex systems: lipid-protein mixtures and cell membranes

4.7 Conclusion

5. Membrane potentials and membrane probes

5.1 Introduction: biological membranes; structure and electrical properties

5.2 Phospholipid membranes as molecular environments

5.3 The physical origins of the transmembrane (DeltaPsi), surface (phiS) and dipolar (phiD) membrane potentials

5.4 Measurement of membrane potentials

5.5 Problems with Spectroscopic Measurements of Membrane Potentials

5.6 Spatial Imaging of membrane potentials

6. Identification and quantification of lipids using mass spectrometry

6.1 Introduction

6.2 Lipid analysis by mass spectrometry

6.3 Conclusion

7. Liquid-state NMR

7.1 Introduction

7.2 How NMR works: the basics

7.3 Some NMR applications in biology

7.4 Conclusion

8. Solid-state NMR in biomembranes

8.1 Introduction

8.2 NMR basics for membrane systems

8.3 Applications of wide-line NMR to membrane systems

8.4 Applications of MAS to biomembranes and natural colloids

8.5 Conclusion

9. Molecular dynamics

9.1 Introduction

9.2 The basis of molecular mechanics

9.3 The basis of molecular dynamics

9.4 Factors affecting the length of simulations

9.5 Problems caused by solvents

9.6 How to build a lipid bilayer for simulation purposes

9.7 Special cases of membrane proteins

9.8 Summary

10. Two-dimensional infrared studies of biomolecules

10.1 Introduction

10.2 Description of the technique

10.3 Spectral simulations

10.4 Two-dimensional studies of human lipoproteins

10.5 Summary

11. Biological applications of single- and two-photon fluorescence

11.1 Introduction

11.2 Basic principles of fluorescence

11.3 Main principles of RET via single-photon excitation

11.4 Detection of RET

11.5 Biological examples of RET monitored by frequency-domain FLIM

11.6 Two-photon fluorescence

11.7 Applications of two-photon fluorescence

11.8 Photoselection and fluorescence anisotropy

11.9 Fluorescence anisotropy and isotropic rotational diffusion

11.10 Fluorescent probes in proteins and membranes

11.11 Future developments

11.12 Conclusions

12. Optical tweezers

12.1 Introduction

12.2 Theoretical background

12.3 Apparatus

12.4 Data collection and analysis

12.5 A biological application

12.6 Other biological examples

12.7 Summary

13. PET imaging in chemical biology

13.1 Introduction

13.2 Positron emission tomography: principles and instrumentation

13.3 Applications of PET imaging in the biomedical sciences

13.4 Conclusions and outlook

14. Chemical genetics

14.1 Introduction

14.2 Why chemicals?

14.3 Chemical genetics - why now?

14.4 The relationship between classical genetics and chemical genetics

14.5 Forward chemical genetics

14.6 Reverse chemical genetics

14.7 Closing remarks

Index


Editors

Banafshé Larijani
Head of Cell Biophysics Laboratory, Cancer Research UK, London Research Institute
Colin A Rosser
Director of Studies, Rye St Antony School, Oxford
Rudiger Woscholski
Division of Cell and Molecular Biology, Faculty of Natural Sciences and Chemical Biology Centre (CBC), Imperia/ College, London



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.