Kunisch / Tröltzsch / Leugering | Control of Coupled Partial Differential Equations | Buch | 978-3-7643-7720-5 | sack.de

Buch, Englisch, Band 155, 384 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 856 g

Reihe: International Series of Numerical Mathematics

Kunisch / Tröltzsch / Leugering

Control of Coupled Partial Differential Equations

Buch, Englisch, Band 155, 384 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 856 g

Reihe: International Series of Numerical Mathematics

ISBN: 978-3-7643-7720-5
Verlag: Springer


The international Conference on Optimal Control of Coupled Systems of Partial Di?erential Equations was held at the Mathematisches Forschungsinstitut Ob- wolfach (www.mfo.de) from April, 17 to 23, 2005. The scienti?c program included 30 talks coveringvarious topics as controllability,feedback-control,optimality s- tems, model-reduction techniques, analysis and optimal control of ?ow problems and ?uid-structure interactions, as well as problems of shape and topology op- mization. The applications discussed during the conference range from the op- mization and control of quantum mechanical systems, the design of piezo-electric acoustic micro-mechanical devices, optimal control of crystal growth, the control of bodies immersed into a ?uid to airfoil design and much more. Thus the app- cations are across all time and length scales. Optimization and control of systems governed by partial di?erential eq- tions and more recently by variational inequalities is a very active ?eld of research in Applied Mathematics, in particular in numerical analysis, scienti?c comp- ing and optimization. In order to able to handle real-world applications, scalable and parallelizable algorithms have to be designed, implemented and validated. This requires an in-depth understanding of both the theoretical properties and the numerical realization of such structural insights. Therefore, a ‘core’ devel- ment within the ?eld of optimization with PDE-constraints such as the analysis of control-and-state-constrained problems, the role of obstacles, multi-phases etc. and an interdisciplinary ‘diagonal’ bridging regarding applications and numerical simulation are most important.
Kunisch / Tröltzsch / Leugering Control of Coupled Partial Differential Equations jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


A Sharp Geometric Condition for the Boundary Exponential Stabilizability of a Square Plate by Moment Feedbacks only.- Local Exponential Stabilization Strategies of the Navier-Stokes Equations, d = 2, 3, via Feedback Stabilization of its Linearization.- Convergence Analysis of an Adaptive Finite Element Method for Distributed Control Problems with Control Constraints.- Optimal Boundary Control in Flood Management.- On Two Numerical Approaches for the Boundary Control Stabilization of Semi-linear Parabolic Systems: A Comparison.- Fast Solution Techniques in Constrained Optimal Boundary Control of the Semilinear Heat Equation.- Optimal and Model Predictive Control of the Boussinesq Approximation.- Applications of Semi-smooth Newton Methods to Variational Inequalities.- Identification of Nonlinear Coefficients in Hyperbolic PDEs, with Application to Piezoelectricity.- An SQP Active Set Method for a Semilinear Optimal Control Problem with Nonlocal Radiation Interface Conditions.- Shape Optimization for Navier-Stokes Equations.- A Family of Stabilization Problems for the Oseen Equations.- Beyond Bilinear Controllability: Applications to Quantum Control.- Optimal Control Problems with Convex Control Constraints.- Control of Moving Domains, Shape Stabilization and Variational Tube Formulations.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.