E-Book, Englisch, 406 Seiten, Web PDF
Reihe: IFAC Postprint Volume
Koskinen / Halme Intelligent Autonomous Vehicles 1995
1. Auflage 2014
ISBN: 978-1-4832-9686-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 406 Seiten, Web PDF
Reihe: IFAC Postprint Volume
ISBN: 978-1-4832-9686-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
The area of intelligent autonomous vehicles or robots has proved to be very active and extensive both in challenging applications as well as in the source of theoretical development. Automation technology is rapidly developing in many areas including: agriculture, mining, traditional manufacturing, automotive industry and space exploration. The 2nd IFAC Conference on Intelligent Autonomous Vehicles 1995 provides the forum to exchange ideas and results among the leading researchers and practitioners in the field. This publication brings together the papers presented at the latest in the series and provides a key evaluation of developments in automation technologies.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Intelligent Autonomous Vehicles 1995;2
3;Copyright Page;3
4;2nd IFAC Conference on Intelligent Autonomous Vehicles;4
5;Foreword;5
6;Table of Contents;6
7;PART I: VISION BASED PERCEPTION;12
7.1;Chapter 1. Vehicle Detection and Recognition in Greyscale Imagery;12
7.1.1;1. Introduction;12
7.1.2;2. Detection;12
7.1.3;3. Recognition;14
7.1.4;4. Integration and results;17
7.1.5;5. Conclusions;17
7.1.6;Acknowledgements;17
7.1.7;6. REFERENCES;17
7.2;Chapter 2. More Intelligence by Knowledge-Based Colour-Evaluation; Signal Light Recognition;18
7.2.1;1. INTRODUCTION;18
7.2.2;2. SIGNAL LIGHTS IN HIGHWAY TRAFFIC;19
7.2.3;3. CONCEPT OF SIGNAL LIGHT RECOGNITION;20
7.2.4;4. SLR-IMPLEMENTATION;21
7.2.5;5. EXPERIMENTS;22
7.2.6;6. CONCLUSION;23
7.2.7;7. ACKNOWLEDGEMENTS;23
7.2.8;REFERENCES;23
7.3;Chapter 3. Knowledge Based Real-Time Vision;24
7.3.1;1. VISION FOR IAV;24
7.3.2;2. THE IMAGE MEASUREMENT SYSTEM 'KRONOS';24
7.3.3;3. OBJECT REPRESENTATION FOR TRACKING;25
7.3.4;4. DOMAIN MODELING;27
7.3.5;5. APPLICATIONS;28
7.3.6;6. CONCLUSIONS;29
7.3.7;7. REFERENCES;29
7.4;Chapter 4. A Global Road Scene Analysis System for Autonomous Vehicles;30
7.4.1;1. HIGH SPEED VEHICLE GUIDANCE;30
7.4.2;2. GLOBAL ROAD MARKING ANALYSIS;31
7.4.3;3. REAL TIME IMPLANTATION;33
7.4.4;4. RESULTS AND DISCUSSION;34
7.4.5;ACKNOWLEDGMENTS;34
7.4.6;5. REFERENCES;34
8;PART II: SENSORS AND CONTROL SYSTEMS;36
8.1;Chapter 5. An All-Terrain Intelligent Autonomous Vehicle with Sensor Fusion Based Navigation Capabilities;36
8.1.1;1. INTRODUCTION;36
8.1.2;2. HIGH VANTAGE POINT BASED NAVIGATION;37
8.1.3;3. DISTANCE TRANSFORM BASED PATH PLANNING;37
8.1.4;4. EXPERIMENTAL FIT-OUT;38
8.1.5;5. PRELIMINARY TRACKING RESULTS;39
8.1.6;6. PASSIVE AND ACTIVE RANGE SENSORS;39
8.1.7;7. CONCLUSIONS;39
8.1.8;REFERENCES;39
8.2;Chapter 6. Development in Digital Transducers for Vehicle Control and Telemetrie Instrumentation;44
8.2.1;1. INTRODUCTION;44
8.2.2;2. GENERAL DIGITAL TRANSDUCER DESIGN ASPECTS;45
8.2.3;3. CURRENT TRANSDUCER;45
8.2.4;4. ACCELEROMETER;46
8.2.5;5. Conclusions;48
8.2.6;References;48
8.3;Chapter 7. Autonomous Mobile Robot Navigation Using a Low-Cost Fibre Optic Gyroscope;50
8.3.1;1. BACKGROUND;50
8.3.2;2. GYROSCOPE OPERATING PRINCIPLES;50
8.3.3;3. GYROSCOPE DEVELOPMENT;51
8.3.4;4. ROBOT NAVIGATION;52
8.3.5;ACKNOWLEDGEMENT;54
8.3.6;REFERENCES;54
8.4;Chapter 8. On the Design and Prototyping of a Mobile Robot Control System;56
8.4.1;1. INTRODUCTION;56
8.4.2;2. TEST VEHICLE;57
8.4.3;3. FUNCTIONAL STRUCTURE OF THE CONTROL SYSTEM;58
8.4.4;5. PATH GENERATION AND TRAJECTORY CONTROL PRINCIPLES;60
8.4.5;6. PROTOTYPE CODE CREATION AND SIMULATION;61
8.4.6;7. DISCUSSION;62
8.4.7;REFERENCES;62
8.4.8;Acknowledgements;62
9;PART III: ROUTE AND MOTION PLANNING I;64
9.1;Chapter 9. Path Planning by Intelligent Autonomous Robotic Vehicles with Growing World Models;64
9.1.1;INTRODUCTION;64
9.1.2;2. FORMALIZATION OF THE PROBLEM;65
9.1.3;3. PLANNING A GLOBALLY SHORTEST PATH;66
9.1.4;4. GRAPH MODEL GROWING IN THE CASE OF NEW START AND/OR GOAL POINTS;68
9.1.5;5. CONCLUSION;69
9.1.6;REFERENCES;69
9.2;Chapter 10. Planning Optimal Paths in a Partially Unknown Environment;70
9.2.1;1. INTRODUCTION;70
9.2.2;2. GLOBAL PATH PLANNING;71
9.2.3;3. LOCAL PATH PLANNING;71
9.2.4;4. EXPERIMENTS;73
9.2.5;5. CONCLUSION;73
9.2.6;ACKNOWLEDGMENT;74
9.2.7;REFERENCES;74
9.3;Chapter 11. Planning for Reactive Control;76
9.3.1;1. INTRODUCTION;76
9.3.2;2. CONTROL SYSTEM;77
9.3.3;3. LOCALIZATION SYSTEM;78
9.3.4;4. PLANNING SYSTEM;79
9.3.5;6. CONCLUSIONS;80
9.3.6;REFERENCES;81
9.4;Chapter 12. Path Finding Problem and Information Support of Mobile Robots in Uncertainty;82
9.4.1;1. INTRODUCTION;82
9.4.2;2. PATH FINDING ALGORITHMS, THEIR INCOMPARAB1LITY AND ADAPTATION IN UNCERTAINTY.;83
9.4.3;3. THE ALGORITHM EFFICIENCY AND THE RADIUS OF RANGER ACTION.;84
9.4.4;4. UNSTABLE DOMINATION.;85
9.4.5;5. INFORMATION SUPPORT OF MOTION;86
9.4.6;6. CONCLUSIONS;87
9.4.7;REFERENCES;87
10;PART IV: ROUTE AND MOTION PLANNING II;90
10.1;Chapter 13. An Intelligent Supervisory Model for Path Planning and Guidance of Mobile Robots in Non-structured Environments;90
10.1.1;1. INTRODUCTION;90
10.1.2;2. CONTROL SYSTEM ARCHITECTURE;91
10.1.3;3. MODULE DESCRIPTION;91
10.1.4;4. INTELLIGENT SUPERVISORY LEVEL;94
10.1.5;5. CONCLUSIONS;95
10.1.6;6. ACKNOWLEDGEMENTS;95
10.1.7;7. REFERENCES;95
10.2;Chapter 14. Planning and Behaviours - A Hybrid Architecture for Mobile Robots;96
10.2.1;1. INTRODUCTION;96
10.2.2;2. THE ROBOT TEST BED;97
10.2.3;3. A MULTI-AGENT FRAMEWORK;97
10.2.4;4. INTER-AGENT COMMUNICATION;98
10.2.5;5. THE REFLECTIVE AGENT;99
10.2.6;6. DEALING WITH FAILURE;100
10.2.7;7. CONCLUSIONS;100
10.2.8;REFERENCES;101
10.3;Chapter 15. Non-Holonomic Motion Planning Using Distance Field;102
10.3.1;1. INTRODUCTION;102
10.3.2;2. KINEMATIC MODELS;103
10.3.3;3. WEIGHTED DISTANCE FIELD;104
10.3.4;4. SIMULATION RESULTS;106
10.3.5;5. CONCLUSIONS;106
10.3.6;ACKNOWLEDGEMENTS;106
10.3.7;REFERENCES;107
10.4;Chapter 16. A Robot-Task Planner for Mobile Robots;108
10.4.1;1 INTRODUCTION;108
10.4.2;2 THE ROBOT-TASK CONCEPT;108
10.4.3;3 PATH PLANNING;110
10.4.4;4 ROBOT-TASK PLANNING;111
10.4.5;5 CONCLUDING REMARKS;113
10.4.6;References;113
10.5;Chapter 17. Mission Planning for an Autonomous Land Vehicle in an Uncertain Environment;114
10.5.1;1. PROBLEM FORMULATION;114
10.5.2;2. ENVIRONMENT MODEL;115
10.5.3;3. PATH SEARCH;116
10.5.4;4. COMPLETION OF A MISSION WITH REPLANNING;117
10.5.5;5. CONCLUSION;117
10.5.6;REFERENCES;118
11;PART V: INVITED PAPER;120
11.1;Chapter 18. Mobile Robots for Planetary Exploration;120
11.1.1;1. INTRODUCTION;120
11.1.2;2. REQUIREMENTS FOR PLANETARY ROVERS;121
11.1.3;3. SURVEY ON PLANETARY ROVERS;121
11.1.4;4. ACTUAL MARS ROVER DEVELOPMENTS;124
11.1.5;5. System Aspects of the Marsnet Instrument Deployment Device;126
11.1.6;6. CONCLUSIONS;130
11.1.7;REFERENCES;130
12;PART VI: WALKING MACHINES;132
12.1;Chapter 19. On the Gait Control of a Six-Legged Walking Machine;132
12.1.1;1. INTRODUCTION;132
12.1.2;2. REGULAR GAITS;132
12.1.3;3. NEUROBIOLOGICAL COORDINATION;133
12.1.4;4. FREE GAIT;134
12.1.5;CONCLUSION;137
12.1.6;REFERENCES;137
12.2;Chapter 20. Implementing and Testing a Reasoning Based Free Gait Algorithm in the Six Legged;138
12.2.1;1. INTRODUCTION;138
12.2.2;2. ABOUT GAITS;138
12.2.3;3. MOTION PLANNING;139
12.2.4;4. THE FREE GAIT OF MECANT;140
12.2.5;5. DISCRETE WALKER;142
12.2.6;6. SIMULATOR TESTS;142
12.2.7;7. TESTS WITH MECANT;143
12.2.8;REFERENCES;143
12.3;Chapter 21. Six Degrees of Freedom Position and Posture Control for a Quadruped Robot;144
12.3.1;1. INTRODUCTION;144
12.3.2;2. POSITION AND POSTURE CONTROL;144
12.3.3;3. EXPERIMENTAL QUADRUPED ROBOT;146
12.3.4;4. EXPERIMENTAL RESULTS;148
12.3.5;5. CONCLUSION;149
12.3.6;REFERENCES;149
12.4;Chapter 22. Motion Control of a Terrain-Adaptive Walking Robot;150
12.4.1;1. INTRODUCTION;150
12.4.2;2. ATTITUDE CONTROL;151
12.4.3;3. POSITION CONTROL;151
12.4.4;4. ATTITUDE/POSITION CONTROL STRATEGY FOR A WAVE GAIT;152
12.4.5;5. TERRAIN ADAPTIVE GAIT CONTROL;153
12.4.6;7. CONCLUSIONS;155
12.4.7;ACKNOWLEDGMENT;155
12.4.8;REFERENCES;155
13;PART VII: CLIMBING AND WALKING MACHINES;156
13.1;Chapter 23. Mechatronics Structure of Wall Climbing Autonomous Vehicle;156
13.1.1;1. INTRODUCTION;156
13.1.2;2. MECHATRONICS DRIVES AND SENSOR STRUCTURE;157
13.1.3;3. REMOTE CONTROL SYSTEM OF AWCR;158
13.1.4;4. SOFTWARE STRUCTURE OF AWCR REMOTE CONTROL SYSTEM;159
13.1.5;5. FUZZY CONTROL ALGORITHMS FOR PRIMARY TASKS;160
13.1.6;6. CONCLUSION;161
13.1.7;REFERENCES;161
13.2;Chapter 24. Energy Consumption of a Walking Machine. Model Estimations and Optimization;162
13.2.1;1. INTRODUCTION;162
13.2.2;2. PARAMETERS OF THE WALKING MACHINE AND GAIT;162
13.2.3;3. ENERGY CONSUMPTION OF THE WALKING MACHINE LOCOMOTION;163
13.2.4;4. ENERGY CONSUMPTION TO PROVIDE MOTION OF LEGS WITH RESPECT TO THE BODY;163
13.2.5;5. ENERGY CONSUMPTION TO SUPPORT THE MACHINE'S WEIGHT;164
13.2.6;6. ENERGY CONSUMPTION FOR DEVELOPING TRACTION;165
13.2.7;7. TOTAL ENERGY CONSUMPTION FOR THE MACHINE LOCOMOTION;165
13.2.8;8. ON ENERGY RECUPERATION AT LOCOMOTION OF WALKING MACHINE;166
13.2.9;9. COMPARISON WITH ENERGY CONSUMPTION ON LOCOMOTION OF ANIMALS;166
13.2.10;REFERENCES;167
14;PART VIII: INDUSTRIAL MATERIAL TRANSPORTATION;168
14.1;Chapter 25. Mobile Robot for an Industrial Environment;168
14.1.1;1. INTRODUCTION;168
14.1.2;2. CURRENT HYDRAULIC CIRCUIT;168
14.1.3;3. SUGGESTED HYDRAULIC CIRCUIT;169
14.1.4;4. SUGGESTED CIRCUIT HYDRAULIC OF WORK;170
14.1.5;5. DRIVING HYDRULIC SYSTEM;171
14.1.6;6. THE SECURITY ELEMENTS;171
14.1.7;7. POWER SUPPLY.;171
14.1.8;8. DETAIL DE THE MODIFICATIONS CARRIED OUT IN THE FORKLIFT TRUCK.;171
14.1.9;9. CONCLUSIONS;172
14.1.10;10. REFERENCES;172
14.2;Chapter 26. On the Abnormal Operating Modes Management in a Transportation System;174
14.2.1;1. INTRODUCTION;174
14.2.2;2. VEHICLES OPERATING MODES;174
14.2.3;3. COEXISTENCE OF DIFFERENT OPERATING MODES;175
14.2.4;4. DECISION SUPPORT FOR OPERATING MODES COMMUTATION;176
14.2.5;5. CONCLUSION;179
14.2.6;REFERENCES;179
15;PART IX: LOCALIZATION AND NAVIGATION TECHNIQUES I;180
15.1;Chapter 27. Map-Based Free Navigation for Autonomous Vehicles;180
15.1.1;1 INTRODUCTION;180
15.1.2;2 KALMAN FILTER;181
15.1.3;3 MATCHING;184
15.1.4;4 SUPERVISION;184
15.1.5;5 IMPLEMENTATION;185
15.1.6;6 CONCLUSION;185
15.1.7;7 REFERENCES;185
15.2;Chapter 28. Design of Navigation and Control for an AGV;186
15.2.1;1. INTRODUCTION;186
15.2.2;2. NAVIGATION;187
15.2.3;3. SIMULATION ENVIRONMENT IN MATLAB;189
15.2.4;4. TEST-BED;190
15.2.5;5. SIMULATION AND EXPERIMENTS;190
15.2.6;6. CONCLUSION;191
15.2.7;7. ACKNOWLEDGEMENT;191
15.2.8;8. REFERENCES;191
15.3;Chapter 29. Real Time Mobile Robot Localization by Using a Laser and a Geometric Map;192
15.3.1;1. INTRODUCTION;192
15.3.2;2. THE SENSORIAL SYSTEM.;193
15.3.3;3. THE CALIBRATION;193
15.3.4;4. PREVIOUS DEFINITIONS;193
15.3.5;5.THE EXTENDED KALMAN FILTER;194
15.3.6;6. RESULTS;195
15.3.7;7. BIBLIOGRAPHY;195
15.4;Chapter 30. Mobile Robot Navigation in Indoor Environments Using Highways and Off-Roads;198
15.4.1;1. INTRODUCTION;198
15.4.2;2. THE MOBILE ROBOT;198
15.4.3;3. THE WORLD MODEL;200
15.4.4;4. MOTION PLANNING;202
15.4.5;5. CONCLUSION;203
15.4.6;6. REFERENCES;203
16;PART X: LOCALIZATION AND NAVIGATION TECHNIQUES;204
16.1;Chapter 31. An Evaluation of INS and GPS for Autonomous Navigation;204
16.1.1;1. INTRODUCTION;204
16.1.2;2. PATH PLANNING;205
16.1.3;3. POSITIONING SENSORS;205
16.1.4;4. INTEGRATION OF POSITIONING SENSORS;207
16.1.5;5. EXPERIMENTAL RESULTS;207
16.1.6;6. CONCLUSIONS;208
16.1.7;REFERENCES;209
16.2;Chapter 32. Scene Recognition and Landmark Navigation for Road Vehicles;210
16.2.1;1. INTRODUCTION;210
16.2.2;2. LOCAL INTEGRALS; MISSION ELEMENTS;211
16.2.3;3. MISSION PLANNING AND MONITORING;214
16.2.4;4. CONCLUSIONS;214
16.2.5;LITERATURE;215
16.3;Chapter 33. Development of an Autonomous Navigation System for an Outdoor Vehicle;216
16.3.1;1 INTRODUCTION;216
16.3.2;2 THE PLATFORM;216
16.3.3;3 CONTROL SYSTEM;216
16.3.4;4 MISSION PLANNING AND CONTROL UNIT (MPCU);217
16.3.5;5 POSITIONING UNIT (PU);218
16.3.6;6 PILOTING SYSTEM UNIT (PSU);220
16.3.7;7 CONCLUSIONS;221
16.3.8;REFERENCES;221
16.4;Chapter 34. Positioning an Autonomous Off-Road Vehicle by Using Fused DGPS and Inertial Navigation;222
16.4.1;1. INTRODUCTION;222
16.4.2;2. THE TEST BED ARSKA;223
16.4.3;3. GLOBAL POSITIONING SYSTEMS;224
16.4.4;4. GUARDING TASK;226
16.4.5;5 CONCLUSIONS;227
16.4.6;REFERENCES;227
17;PART XI: LOCALIZA TION AND NA VIGA TION TECHNIQUES III;228
17.1;Chapter 35. Estimating a Position of Autonomous Vehicle Based on Projection Function;228
17.1.1;1. INTRODUCTION;228
17.1.2;2. ESTIMATION OF THE POSITION;228
17.1.3;3. EFFECTIVENESS OF THE METHOD;230
17.1.4;4. CONCLUSION;232
17.1.5;REFERENCES;233
17.2;Chpater 36. Neural Navigation Approach of an Autonomous Mobile Robot in a Partially Structured Environment;234
17.2.1;I. INTRODUCTION;234
17.2.2;II. FUZZY AND NEURAL NAVIGATION APPROACHES;235
17.2.3;III. THE PROPOSED NEURAL NAVIGATION APPROACH;235
17.2.4;IV. SIMULATION;238
17.2.5;V. CONCLUSION;239
17.2.6;ACKNOWLEDGEMENTS;239
17.2.7;REFERENCES;239
17.3;Chapter 37. Localization System of the Hospital Transport Robot FIRST;240
17.3.1;1. INTRODUCTION;240
17.3.2;2. OVERVIEW OF FIRST;241
17.3.3;3. ROBOT LOCALIZATION;242
17.3.4;4. RESULTS;244
17.3.5;5. CONCLUSION;245
17.3.6;ACKNOWLEDGEMENTS;245
17.3.7;6. REFERENCES;245
17.4;Chapter 38. Spatial Learning of an Autonomous Mobile Robot Using Model-Based Approach;246
17.4.1;1. INTRODUCTION;246
17.4.2;2. MODEL-BASED OBSTACLE AVOIDANCE;247
17.4.3;3. SPATIAL LEARNING USING HYPOTHESIS REASONING;247
17.4.4;4. EXPERIMENTS;250
17.4.5;5. CONCLUSION;251
17.4.6;REFERENCES;251
18;PART XII: MOTION CONTROL;252
18.1;Chapter 39. Design of a Robust High Performance Fuzzy Path Tracker for Autonomous Vehicles;252
18.1.1;1. INTRODUCTION;252
18.1.2;2. FUZZY PATH TRACKING;253
18.1.3;3. ROBUST DESIGN OF FUZZY PATH TRACKERS;253
18.1.4;4. RAM-1 FUZZY PATH TRACKING;255
18.1.5;5. CONCLUSIONS;256
18.1.6;6. REFERENCES;256
18.2;Chapter 40. Robust Tracking and Parking Control Laws for Wheeled Autonomous Vehicles;258
18.2.1;1. INTRODUCTION;258
18.2.2;2. PROBLEM STATEMENT;258
18.2.3;3. ROBUSTNESS;260
18.2.4;4. ROBUST DYNAMIC STATE FEEDBACK TRACKING CONTROLLER;260
18.2.5;5. ROBUST PARKING CONTROL LAW;261
18.2.6;6. SIMULATION RESULTS;262
18.2.7;6. CONCLUDING REMARKS;263
18.2.8;References;263
18.2.9;APPENDIX;263
18.3;Chapter 41. Hierarchical Behavioural Control for Autonomous Vehicles;264
18.3.1;1. INTRODUCTION;264
18.3.2;2. THE COMPUTATIONAL MODEL;265
18.3.3;3. THE LANGUAGE;265
18.3.4;4. RESULTS;267
18.3.5;5. CONCLUSIONS;268
18.3.6;REFERENCES;268
18.3.7;APPENDIX;269
18.4;Chapter 42. Lateral Vehicle Control for Automated Lane Following;270
18.4.1;1 INTRODUCTION;270
18.4.2;2 MATHEMATICAL MODEL OF THE VEHICLE;271
18.4.3;3 NONLINEAR LATERAL CONTROL SYSTEM;272
18.4.4;4 CONCLUSION;275
18.4.5;5 ACKNOWLEDGEMENT;275
18.4.6;References;275
19;PART XIII: NEURAL MOTION CONTROLLERS;276
19.1;Chapter 43. Neural Speed Control for Autonomous Road Vehicles;276
19.1.1;1. INTRODUCTION;276
19.1.2;2. NONLINEAR VEHICLE MODEL;277
19.1.3;3. TRAINING METHOD;278
19.1.4;4. SPEED CONTROLLER DESIGN;279
19.1.5;5. RESULTS;279
19.1.6;6. CONCLUSIONS;281
19.1.7;REFERENCES;281
19.2;Chapter 44. Compensating the Tracking-Error of a Mobile Robot by On-Line Tuning of a Neural Network;282
19.2.1;1. INTRODUCTION;282
19.2.2;2. ANALYSIS AND COMPUTATION OF TRAJECTORY TRACKING ERRORS;283
19.2.3;3. THE NEURAL NETWORK CONTROLLER;284
19.2.4;CONCLUSIONS;287
19.2.5;ACKNOWLEDGEMENTS;287
19.2.6;REFERENCES;287
19.3;Chapter 45."Programming" by Teaching: Neural Network Control in the Manchester Mobile Robot;288
19.3.1;1 INTRODUCTION;288
19.3.2;2 THE ROBOT;289
19.3.3;3 THE CONTROL SYSTEM;289
19.3.4;4 SONAR AND INFRARED SENSORS FOR ROBOT CONTROL;289
19.3.5;5 USING COMPUTER VISION FOR ROBOT CONTROL;290
19.3.6;6 SUMMARY AND CONCLUSION;292
19.3.7;References;293
19.4;Chapter 46. Road Direction Detection Based on Gabor Filters and Neural Networks;294
19.4.1;1. INTRODUCTION;294
19.4.2;2. ROAD DIRECTION DETECTION SYSTEM;295
19.4.3;3. EXPERIMENTAL RESULTS;297
19.4.4;4. CONCLUSION;298
19.4.5;5. REFERENCES;299
20;PART XIV: APPLICATIONS;300
20.1;Chapter 47. Robots for Anti-Personnel Mine Search;300
20.1.1;1 INTRODUCTION;300
20.1.2;2 MINE TECHNOLOGY AND DETECTION;301
20.1.3;3 ROBOT DESIGN;301
20.1.4;4 CONCLUSION;304
20.1.5;5 REFERENCES;304
20.2;Chapter 48. Navigation System for LHD Machines;306
20.2.1;1.0 INTRODUCTION;306
20.2.2;2. CONTROL SYSTEM FOR AN AUTONOMOUS LHD MACHINE;307
20.2.3;3.0 CONTROL SYSTEM OF THE VEHICLE;310
20.2.4;4.0 TEST RESULTS;310
20.2.5;5.0 CONCLUSIONS;311
20.2.6;REFERENCES;311
20.3;Chapter 49. An Autonomous Plastering Robot for Walls and Ceilings;312
20.3.1;1. INTRODUCTION;312
20.3.2;2. ROBOT DESCRIPTION;312
20.3.3;3. NAVIGATION AND MAPPING;314
20.3.4;4. EXPERIMENTAL EVALUATION;315
20.3.5;5. CONCLUSIONS AND FUTURE WORK;317
20.3.6;6. ACKNOWLEDGEMENTS;317
20.3.7;7. REFERENCES;317
20.4;Chapter 50. Reliability and Safety for Mobile Robots in Hostile Environment;318
20.4.1;1. INTRODUCTION;318
20.4.2;2. ASSESSMENT OF RELIABILITY AND SAFETY;319
20.4.3;3. EXAMPLES FOR OPTIMISING RELIABILITY AND SAFETY;320
20.4.4;4. SUMMARY AND CONCLUSION;322
20.4.5;REFERENCES;322
21;PART XV: ENVIRONMENT PERCEPTION TECHNIQUES;324
21.1;Chapter 51. Dynamic Environment's Range Data Analysis by a Moving Observer;324
21.1.1;1. INTRODUCTION;324
21.1.2;2. STATEMENT OF THE PROBLEM;325
21.1.3;3. FRAMEWORK OF THE ANALYSIS OF THE DYNAMIC SCENES;325
21.1.4;4. PROPOSED SOLUTION FOR FINDING ALL OBJECTS' MOTION PARAMETERS;327
21.1.5;5. CONCLUSIONS;328
21.1.6;6. ACKNOWLEDGEMENTS;328
21.1.7;REFERENCES;328
21.2;Chapter 52. Motion and Structure from Significant Segments in Man Made Environments;330
21.2.1;1. INTRODUCTION;330
21.2.2;2. EXTRACTION AND RECTIFICATION OF SEGMENTS;330
21.2.3;3. MATCHING AND ASSOCIATION OF SEGMENTS;331
21.2.4;4. MOTION AND STRUCTURE DETERMINATION;332
21.2.5;5. EXPERIMENTAL RESULTS;334
21.2.6;6. CONCLUSIONS AND FUTURE WORK;335
21.2.7;APPENDIX;335
21.2.8;7. REFERENCES;335
21.3;Chapter 53. Smart Servoing of a Controllable Range Sensor for Target Tracking: Application to Pedestrians;336
21.3.1;1. INTRODUCTION;336
21.3.2;2. 3D-SENSOR;336
21.3.3;3. TRACKING SYSTEM;337
21.3.4;4. TARGET RECOGNITION;337
21.3.5;5. TRACKING FILTER EQUATIONS;338
21.3.6;6. EXPERIMENTAL RESULTS;340
21.3.7;7. CONCLUSION;341
21.3.8;8. REFERENCES;341
21.4;Chapter 54. Millimetre Wave Radar for Close Terrain Mapping of an Intelligent Autonomous Vehicle;342
21.4.1;1. INTRODUCTION;342
21.4.2;2. MILLIMETER WAVE RADAR;343
21.4.3;3. RADAR SYSTEM;345
21.4.4;4. RADAR PERFORMANCE;345
21.4.5;5. SCANNING TESTS;346
21.4.6;6. CONCLUSION;347
21.4.7;REFERENCES;347
22;PART XVI: MULTIROBOT SYSTEMS;348
22.1;Chapter 55. Motion Control of Family Mobile Robots with Hierarchical Cooperative Behavior;348
22.1.1;1. INTRODUCTION;348
22.1.2;2. The STRUCTURE OF THE SYSTEM;349
22.1.3;3. PARENT-CHILDREN, LEADER-FOLLOWER TYPE ROBOT SYSTEM;349
22.1.4;4. NAVIGATION FUNCTION;350
22.1.5;5. SIMULATION;351
22.1.6;6. CONCLUSION;351
22.1.7;REFERECES;351
22.2;Chapter 56. Coordination of Mobile Robots by Estimating Relative Spatial and Temporal Uncertainties;354
22.2.1;1. INTRODUCTION;354
22.2.2;2. MODELLING OF ROBOTS IN SPACE-TIME;355
22.2.3;3. ROBOT COORDINATION IN SPACE-TIME;356
22.2.4;4. SIMULATION AND EXPERIMENTS;358
22.2.5;5. CONCLUSION;359
22.2.6;6. ACKNOWLEDGEMENT;359
22.2.7;REFERENCES;359
22.3;Chapter 57. An Intelligent Data Carrier System for Local Communication Between Cooperative Multiple Mobile Robots and Environment;360
22.3.1;1. INTRODUCTION;360
22.3.2;2. COMMUNICATION STRATEGY;361
22.3.3;3. THE STRUCTURE OF THE IDC DEVICES;362
22.3.4;4. APPLICATION EXAMPLE;364
22.3.5;5. CONCLUSIONS;364
22.3.6;6. ACKNOWLEDGEMENTS;365
22.3.7;7. REFERENCES;365
22.4;Chapter 58. Evolving of a Fitness Based Operation Strategy for a Robot Society;366
22.4.1;1. INTRODUCTION;366
22.4.2;2. ROBOT SOCIETY;367
22.4.3;3. TASK FORMULATION;368
22.4.4;4. SIMULATION RESULTS;370
22.4.5;5. CONCLUSIONS AND SOME POSSIBLE FUTURE REALIZATIONS;371
22.4.6;REFERENCES;371
23;PART XVII: MAN-MACHINE SYSTEMS;372
23.1;Chapter 59. Robotics Control Station: From Teleoperation up to Mission Preparation;372
23.1.1;1. INTRODUCTION;373
23.1.2;2. AUTOMATION : THE LIMITS;373
23.1.3;3. VEHICLE AUTONOMY;373
23.1.4;4. RCS : FUNCTIONAL DESCRIPTION;376
23.1.5;5. CONCLUSIONS;379
23.1.6;REFERENCES;379
23.2;Chapter 60. PILOT: A Language for Planning Mission;380
23.2.1;1. INTRODUCTION;380
23.2.2;2. THE PILOT LANGUAGE;380
23.2.3;3. THE CONTROL SYSTEM;382
23.2.4;4. EXAMPLE OF MISSION: DETECTION OF LINE;383
23.2.5;5. CONCLUSION;384
23.2.6;6. REFERENCES;384
23.3;Chapter 61. Telecommands for Remotely Operated Vehicles;386
23.3.1;1. INTRODUCTION;386
23.3.2;2. VIDEO IMAGES AND 3D LADAR WITH AMPLITUDE;388
23.3.3;3. INTERNET EXPERIMENTS;389
23.3.4;4. CONCLUSIONS;391
23.3.5;REFERENCES;391
24;PART XVIII: ROAD VEHICLES AUTOMATION;392
24.1;Chapter 62. Methodical Structuring of Knowledge used in an Intelligent Driving System;392
24.1.1;1. INTRODUCTION;392
24.1.2;2. SOME REMARKS ON VaMoRs-P;392
24.1.3;3. THE KNOWLEDGE-ORIENTED VIEW;393
24.1.4;4. KNOWLEDGE RELEVANT FOR AMV;394
24.1.5;5. PROCESSING OF KNOWLEDGE PACKAGES;394
24.1.6;6. LESSONS OF OTHER DISCIPLINES;395
24.1.7;7. SOME FURTHER TASKS;396
24.1.8;8. CONCLUSION;397
24.1.9;REFERENCES;397
24.2;Chapter 63. Deciding the Behaviour of an Autonomous Mobile Road Vehicle;398
24.2.1;1. INTRODUCTION;398
24.2.2;2. MODULE BEHAVIOUR DECISION;398
24.2.3;3. EXPERIMENTAL RESULTS;402
24.2.4;4. CONCLUSION;403
24.2.5;REFERENCES;403
24.3;Chapter 64. An Obstacle Avoidance Demonstrator: A Dedicated LAN System for Automotive Real-Time Applications (French Prometheus Pro-Chip Project);404
24.3.1;1. INTRODUCTION;404
24.3.2;2. THE SYSTEM SIGNIFICANT CONSTRAINTS AND THE GLOBAL SYSTEM ARCHITECTURE;405
24.3.3;3. THE DEDICATED LAN FOR AUTOMOTIVE CARS;406
24.3.4;4. CONCLUSION;408
24.3.5;REFERENCES;408
24.4;Chapter 65. A Real-Time On-Board System for Driver Assistance;410
24.4.1;1 Introduction;410
24.4.2;2 The Driver Assistance System;410
24.4.3;3. Management ment Data of the Environ-;411
24.4.4;4 The Supervisor;411
24.4.5;5 Software and hardware architecture;414
24.4.6;6 Conclusions and Perspectives;414
24.4.7;References;415
25;Author Index;416