Komech / Kopylova | Dispersion Decay and Scattering Theory | E-Book | sack.de
E-Book

E-Book, Englisch, 202 Seiten, E-Book

Komech / Kopylova Dispersion Decay and Scattering Theory


1. Auflage 2014
ISBN: 978-1-118-38288-2
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 202 Seiten, E-Book

ISBN: 978-1-118-38288-2
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



A simplified, yet rigorous treatment of scattering theorymethods and their applications
Dispersion Decay and Scattering Theory provides thorough,easy-to-understand guidance on the application of scattering theorymethods to modern problems in mathematics, quantum physics, andmathematical physics. Introducing spectral methods withapplications to dispersion time-decay and scattering theory, thisbook presents, for the first time, the Agmon-Jensen-Kato spectraltheory for the Schr?dinger equation, extending the theory to theKlein-Gordon equation. The dispersion decay plays a crucial role inthe modern application to asymptotic stability of solitons ofnonlinear Schr?dinger and Klein-Gordon equations.
The authors clearly explain the fundamental concepts andformulas of the Schr?dinger operators, discuss the basic propertiesof the Schr?dinger equation, and offer in-depth coverage ofAgmon-Jensen-Kato theory of the dispersion decay in the weightedSobolev norms. The book also details the application of dispersiondecay to scattering and spectral theories, the scattering crosssection, and the weighted energy decay for 3D Klein-Gordon and waveequations. Complete streamlined proofs for key areas of theAgmon-Jensen-Kato approach, such as the high-energy decay of theresolvent and the limiting absorption principle are alsoincluded.
Dispersion Decay and Scattering Theory is a suitable bookfor courses on scattering theory, partial differential equations,and functional analysis at the graduate level. The book also servesas an excellent resource for researchers, professionals, andacademics in the fields of mathematics, mathematical physics, andquantum physics who would like to better understand scatteringtheory and partial differential equations and gain problem-solvingskills in diverse areas, from high-energy physics to wavepropagation and hydrodynamics.

Komech / Kopylova Dispersion Decay and Scattering Theory jetzt bestellen!

Weitere Infos & Material


List of Figures xiii
Foreword xv
Preface xvii
Acknowledgments xix
Introduction xxi
1 Basic Concepts and Formulas 1
1 Distributions and Fourier transform 1
2 Functional spaces 3
2.1 Sobolev spaces 3
2.2 AgmonSobolev weighted spaces 4
2.3 Operatorvalued functions 5
3 Free propagator 6
3.1 Fourier transform 6
3.2 Gaussian integrals 8
2 Nonstationary Schrödinger Equation 11
4 Definition of solution 11
5 Schrödinger operator 14
5.1 A priori estimate 14
5.2 Hermitian symmetry 14
6 Dynamics for free Schrödinger equation 15
7 Perturbed Schrödinger equation 17
7.1 Reduction to integral equation 17
7.2 Contraction mapping 19
7.3 Unitarity and energy conservation 20
8 Wave and scattering operators 22
8.1 Möller wave operators. Cook method 22
8.2 Scattering operator 23
8.3 Intertwining identities 24
3 Stationary Schrödinger Equation 25
9 Free resolvent 25
9.1 General properties 25
9.2 Integral representation 28
10 Perturbed resolvent 31
10.1 Reduction to compact perturbation 31
10.2 Fredholm Theorem 32
10.3 Perturbation arguments 33
10.4 Continuous spectrum 35
10.5 Some improvements 36
4 Spectral Theory 37
11 Spectral representation 37
11.1 Inversion of Fourier-Laplace transform 37
11.2 Stationary Schrödinger equation 39
11.3 Spectral representation 39
11.4 Commutation relation 40
12 Analyticity of resolvent 41
13 Gohberg-Bleher theorem 43
14 Meromorphic continuation of resolvent 47
15 Absence of positive eigenvalues 50
15.1 Decay of eigenfunctions 50
15.2 Carleman estimates 54
15.3 Proof of Kato Theorem 56
5 High Energy Decay of Resolvent 59
16 High energy decay of free resolvent 59
16.1 Resolvent estimates 60
16.2 Decay of free resolvent 64
16.3 Decay of derivatives 65
17 High energy decay of perturbed resolvent 67
6 Limiting Absorption Principle 71
18 Free resolvent 71
19 Perturbed resolvent 77
19.1 The case lambda > 0 77
19.2 The case lambda = 0 78
20 Decay of eigenfunctions 81
20.1 Zero trace 81
20.2 Division problem 83
20.3 Negative eigenvalues 86
20.4 Appendix A: Sobolev Trace Theorem 86
20.5 Appendix B: SokhotskyPlemelj formula 87
7 Dispersion Decay 89
21 Proof of dispersion decay 90
22 Low energy asymptotics 92
8 Scattering Theory and Spectral Resolution 97
23 Scattering theory 97
23.1 Asymptotic completeness 97
23.2 Wave and scattering operators 99
23.3 Intertwining and commutation relations 99
24 Spectral resolution 101
24.1 Spectral resolution for the Schrödinger operator 101
24.2 Diagonalization of scattering operator 101
25 T Operator and SMatrix 1003
9 Scattering Cross Section 111
26 Introduction 111
27 Main results 117
28 Limiting Amplitude Principle 120
29 Spherical waves 121
30 Plane wave limit 125
31 Convergence of flux 127
32 Long range asymptotics 128
33 Cross section 131
10 Klein-Gordon Equation 133
35 Introduction 134
36 Free Klein-Gordon equation 137
36.1 Dispersion decay 137
36.2 Spectral properties 139
37 Perturbed Klein-Gordon equation 143
37.1 Spectral properties 143
37.2 Dispersion decay 145
38 Asymptotic completeness 149
11 Wave equation 151
39 Introduction 152
40 Free wave equation 154
40.1 Time-decay 154
40.2 Spectral properties 155
41 Perturbed wave equation 158
41.1 Spectral properties 158
41.2 Dispersion decay 160
42 Asymptotic completeness 163
43 Appendix: Sobolev embedding theorem 165
References 167
Index 172


ALEXANDER KOMECH, PhD, is Professor and Senior Scientistin the Department of Mathematics at Vienna University and theInstitute for Information Transmission Problems at the RussianAcademy of Sciences. He is the author of more than 100 publishedjournal articles.
ELENA KOPYLOVA, PhD, is Senior Scientist in theDepartment of Mathematics at Vienna University and the Institutefor Information Transmission Problems at the Russian Academy ofSciences. She is the author of approximately 50 published journalarticles.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.