Kohen | Cell Structure and Function by Microspectrofluorometry | E-Book | sack.de
E-Book

E-Book, Englisch, 490 Seiten

Kohen Cell Structure and Function by Microspectrofluorometry

E-Book, Englisch, 490 Seiten

ISBN: 978-1-4832-6973-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Cell Structure and Function by Microspectrofluorometry provides an overview of the state of knowledge in the study of cellular structure and function using microspectrofluorometry. The book is organized into six parts. Part I begins by tracing the origins of modern fluorescence microscopy and fluorescent probes. Part II discusses methods such as microspectroscopy and flow cytometry; the fluorescence spectroscopy of solutions; and the quantitative implementation of fluorescence resonance energy transfer (FRET) in the light microscope. Part III presents studies on metabolism, including the mechanism of action of xenobiotics; biochemical analysis of unpigmented single cells; and cell-to-cell communication in the endocrine and the exocrine pancreas. Part IV focuses on applications of fluorescent probes. Part V deals with cytometry and cell sorting. It includes studies on principles and characteristics of flow cytometry as a method for studying receptor-mediated endocytosis; and flow cytometric measurements of physiologic cell responses. Part VI on bioluminescence discusses approaches to measuring chemiluminescence or bioluminescence in a single cell and measuring light emitted by living cells.
Kohen Cell Structure and Function by Microspectrofluorometry jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Cell Structure and Function by Microspectrofluorometry;4
3;Copyright Page;5
4;Table of Contents;8
5;Dedication;6
6;Contributors;16
7;Preface;20
8;Tomas Hirschfeld—In Memoriam;24
9;PART I: HISTORY;26
9.1;Chapter 1. The Origins of Modern Fluorescence Microscopy and Fluorescent
Probes;28
9.1.1;I. INTRODUCTION;29
9.1.2;II. THE FIRST FLUORESCENCE MICROSCOPES;34
9.1.3;III. TECHNICAL PROGRESS;38
9.1.4;IV. ADVANCES IN
BIOMEDICAL APPLICATIONS;40
9.1.5;V. MODERN FLUORESCENCE MICROSCOPY IN CELL AND MOLECULAR BIOLOGY;51
9.1.6;VI. DEVELOPMENT OF IMMUNOFLUORESCENCE;69
9.1.7;REFERENCES;72
10;PART II: METHODS;76
10.1;Chapter 2. Microspectroscopy and Flow Cytometry;78
10.1.1;REFERENCES;92
10.2;Chapter 3. From Solution Spectroscopy to Image Spectroscopy;96
10.2.1;I. FLUORESCENCE SPECTRA;97
10.2.2;II. FLUORESCENCE EXCITATION
SPECTRUM;103
10.2.3;III. FLUORESCENCE LIFETIME
AND YIELD;104
10.2.4;IV. FLUORESCENCE
POLARIZATION;105
10.2.5;REFERENCES;109
10.3;Chapter 4. High-Resolution Fluorescence and Phase Microscopy in Conjunction with Micromanipulation for in Situ Study of Metabolism in Living Cells;112
10.3.1;I. INTRODUCTION;112
10.3.2;II. RESOLUTION OF TRANSMISSION AND
FLUORESCENCE MICROSCOPES;113
10.3.3;III. MICROSCOPIC METHODS;114
10.3.4;IV. LONG-WORKING-DISTANCE CONDENSER FOR
MICROMANIPULATION;114
10.3.5;V. APPLICATIONS OF SPECTROSCOPY TO
FLUORESCENCE MICROSCOPY;116
10.3.6;VI. INSTRUMENT DESIGN;116
10.3.7;VII. APPLICATION OF
PHOTOGRAPHY;119
10.3.8;VIII. FUTURE DEVELOPMENTS;122
10.3.9;REFERENCES;122
10.4;Chapter 5. FRET Microscopy: Digital Imaging of Fluorescence Resonance Energy Transfer.
Application in Cell Biology;124
10.4.1;I. INTRODUCTION;124
10.4.2;II. THEORY OF FLUORESCENCE RESONANCE
ENERGY TRANSFER;126
10.4.3;III. MEASUREMENT OF FRET: DATA ACQUISITION AND
ANALYSIS;128
10.4.4;IV. EXPERIMENTAL METHODS
AND RESULTS;131
10.4.5;V. DISCUSSION AND FUTURE
PROSPECTS;138
10.4.6;REFERENCES;140
10.5;Chapter 6. Fluorescence Scanning Instrumentation;144
10.5.1;I . INTRODUCTION;144
10.5.2;II. STAGE SCANNING
MICROFLUOROMETERS;145
10.5.3;III. LASER SCANNING MICROFLUOROMETERS;146
10.5.4; IV. COMPOSITION OF A LASER SCANNING MICROSCOPE;146
10.5.5;V. CONFOCAL LASER SCANNING;148
10.5.6;VI. CHARACTERISTICS OF LASER
SCANNING;149
10.5.7;VII. APPLICATIONS IN LASER
SCANNING;150
10.5.8;REFERENCES;155
10.6;Chapter 7. Fluorescence Microscopy in Three
Dimensions: Microtomoscopy;156
10.6.1;I· INTRODUCTION;156
10.6.2;II. CONFOCAL MICROSCOPY;157
10.6.3;III. APPLICATIONS;162
10.6.4;IV. DISCUSSION;168
10.6.5;REFERENCES;168
10.7;Chapter 8. Fluorescence Photochemical Techniques for the Study of Transport in Cytoplasm and Gytoplasmic
Models;170
10.7.1;I. INTRODUCTION;170
10.7.2;II. APPARATUS AND
METHODOLOGY;172
10.7.3;III. APPLICATIONS TO
CYTOPLASMIC TRANSPORT;177
10.7.4;IV. APPLICATIONS TO
CYTOPLASMIC MODELS IN VITRO;179
10.7.5;V. FLUORESCENCE
PHOTOACTIVATION;184
10.7.6;VI. CONCLUSIONS;185
10.7.7;REFERENCES;185
10.8;Chapter 9. Principles of Frequency-Domain Fluorescence Spectroscopy and
Applications to Protein Fluorescence;188
10.8.1;I. INTRODUCTION;189
10.8.2;II. COMPARISON
OF TIME- AND FREQUENCY-DOMAIN MEASUREMENTS;190
10.8.3;III. THEORY OF FREQUENCY
DOMAINFLUOROMETRY;193
10.8.4;IV. TRYPTOPHAN FLUORESCENCE
FROM PROTEINS;195
10.8.5;V. 2-GHz FREQUENCY-DOMAIN
FLUOROMETRY;198
10.8.6;VI. ADDITIONAL APPLICATIONS OF FREQUENCY-DOMAIN
FLUOROMETRY;203
10.8.7;VII. FUTURE DEVELOPMENTS;207
10.8.8;REFERENCES;207
10.9;Chapter 10. The First Picosecond in Vision;210
10.9.1;I. INTRODUCTION;210
10.9.2;II. PICOSECOND TIME RESOLVED FLUORESCENCE
TECHNIQUES;211
10.9.3;III. PICOSECOND FLUORESCENCE
SPECTROSCOPY RESULTS;212
10.9.4;IV. DISCUSSION;217
10.9.5;REFERENCES;220
11;PART III: METABOLISM;222
11.1;Chapter 11. Microspectrofluorometry of Single Living
Cells: Quo Vadis;224
11.1.1;I . INTRODUCTION;224
11.1.2;II. INSTRUMENTATION
AND METHODS IN MICROSPECTROFLUOROMETRY;225
11.1.3;III. BIOLOGICAL MATERIAL;227
11.1.4;IV. SPATIOTEMPORAL ORGANIZATION OF CELL
METABOLISM;228
11.1.5;V. SPATIOTEMPORAL MAPPING OF OTHER CELL ORGANELLES:
LYSOSOMES;238
11.1.6;VI. FLUORESCENCE DETECTION OF MULTIORGANELLE COMPLEXES ASSOCIATED WITH THE CELL'S DETOXIFICATION
FUNCTION;241
11.1.7;VII. OTHER APPLICATIONS;245
11.1.8;VIII. CONCLUSIONS;249
11.1.9;ACKNOWLEDGMENTS;249
11.1.10;REFERENCES;249
11.2;Chapter 12. Mechanism of Action of Xenobiotics: From Molecular Spectral Studies to
Microspectrofluorometry of Living Cells;254
11.2.1;I. INTRODUCTION;254
11.2.2;II. MECHANISM OF ACTION OF POLYCYCLIC AROMATIC
HYDROCARBONS;256
11.2.3;III. MECHANISM OF ACTION OF
ANTIPSORIATIC DRUGS;265
11.2.4;IV. ANTICANCER DRUGS;274
11.2.5;V. CONCLUSIONS;288
11.2.6;ACKNOWLEDGMENTS;288
11.2.7;REFERENCES;288
11.3;Chapter 13. Microfluorometry as a Tool for Biochemical
Analysis in Unpigmented Single Cells;294
11.3.1;I. AN EXAMPLE OF CONVENIENT
APPARATUS;295
11.3.2;II. RESOLUTION OF
A COMPLEX CELL FLUORESCENCE SPECTRUM;296
11.3.3;III. EVALUATION OF ENZYMATIC ACTIVITIES IN INTACT LIVING
CELLS;299
11.3.4;IV. USE OF FLUORESCENCE WITH
PULSED EXCITATION;301
11.3.5;V. GENERAL CONCLUSIONS;303
11.3.6;REFERENCES;304
11.4;Chapter 14. Fluorescence in the Study of Direct Intercellular Communications: The Case of
Pancreatic Cells;306
11.4.1;I. INTRODUCTION;306
11.4.2;II. FLUORESCENCE APPROACHES TO DIRECT INTERCELLULAR
COMMUNICATIONS;307
11.4.3;III. INTERCELLULAR COMMUNICATION NETWORK
IN THE PANCREAS;313
11.4.4;IV. CONCLUDING REMARKS;316
11.4.5;REFERENCES;317
12;PART IV: FLUORESCENT PROBES;320
12.1;Chapter 15. Approaches to the Study of Spatial and Temporal Changes in the Structure and
Chemistry of Cells;322
12.1.1;I . INTRODUCTION;322
12.1.2;II. APPROACHES TO THE STUDY
OF CELLULAR DYNAMICS;323
12.1.3;III. EXPERIMENTAL STUDIES;326
12.1.4;IV. PROSPECTUS;335
12.1.5;REFERENCES;335
12.2;Chapter 16. Fluorescence Studies of Microtubule Dynamics in Living
Cells;340
12.2.1;I. INTRODUCTION;340
12.2.2;II. MICROTUBULE STRUCTURE, INTRINSIC POLARITY, AND
ORGANIZATION;341
12.2.3;III. SPINDLE STRUCTURE AND
FUNCTION;342
12.2.4;IV. SPINDLE LABILITY;344
12.2.5;V. FLUORESCENCE APPROACHES
TO ANALYZING ASSEMBLY PATHWAYS;344
12.2.6;VI. FLUORESCENCE MICROSCOPY, PHOTOBLEACHING, AND
DIGITAL IMAGE PROCESSING;345
12.2.7;VII. MICROTUBULE ASSEMBLY OCCURS BY A DYNAMIC INSTABILITY
MECHANISM;348
12.2.8;VIII. COMPARISON WITH OTHER
MICROTUBULE ARRAYS;350
12.2.9;IX. FUTURE DIRECTIONS;350
12.2.10;REFERENCES;351
12.3;Chapter 17. Optical Measurement of Membrane Potential in Invertebrate Ganglia and
Mammalian Cortex;354
12.3.1;I. INTRODUCTION;355
12.3.2;II. SOME OPTICAL SIGNALS ARE
POTENTIAL-DEPENDENT;355
12.3.3;III. MECHANISMS;358
12.3.4;IV. DYES;360
12.3.5;V. RECORDING ACTIVITY OF INDIVIDUAL NEURONS IN A MOLLUSCAN CENTRAL
NERVOUS SYSTEM;361
12.3.6;VI. MONITORING ACTIVITY IN
MAMMALIAN BRAINS;367
12.3.7;VII. SUMMARY;370
12.3.8;REFERENCES;370
12.4;Chapter 18. Measurement of Free Calcium Concentration inside Single Cells with New Fluorescent
Calcium Indicators;372
12.4.1;I. INTRODUCTION;372
12.4.2;II. METHODS;373
12.4.3;III. EXPERIMENTAL RESULTS;378
12.4.4;IV. APPLICATIONS TO CELL
SYSTEMS;380
12.4.5;V. FUTURE DIRECTIONS;383
12.4.6;REFERENCES;384
13;PART V: CYTOMETRY AND
CELL SORTING;386
13.1;Chapter 19. Flow Cytometric Analysis of Ligand Binding
and Endocytosis;388
13.1.1;I . INTRODUCTION;388
13.1.2;II. LIGAND BINDING;389
13.1.3;III. LIGAND INTEREALIZATION;391
13.1.4;IV. LIGAND ACIDIFICATION;391
13.1.5;V. LIGAND DEGRADATION;397
13.1.6;VI. CONCLUSION;399
13.1.7;ACKNOWLEDGMENTS;399
13.1.8;REFERENCES;399
13.2;Chapter 20. Flow Cytometric Measurements of
Physiologic Cell Responses;402
13.2.1;I. INTRODUCTION;402
13.2.2;II. PHYSIOLOGIC PROBES;403
13.2.3;III. INSTRUMENTATION;413
13.2.4;REFERENCES;413
13.3;Chapter 21. Cellular Endogenous Fluorescence: A Basis for Preparing Subpopulations of Functionally
Homogeneous Cells;416
13.3.1;I. INTRODUCTION;416
13.3.2;II. TECHNIQUE OF AUTOFLUORESCEIVCE ACTIVATED CELL
SORTING;417
13.3.3;III. PURIFICATION OF PANCREATIC
B CELLS;418
13.3.4;IV. FUNCTIONAL HETEROGENEITY IN THE PANCREATIC B-CELL
POPULATION;419
13.3.5;V. SUBPOPULATIONS HOMOGENEOUS IN CELLULAR HORMONE
CONTENT;420
13.3.6;VI. SUBPOPULATIONS HOMOGENEOUS IN CELLULAR GLUCOSE
RESPONSIVENESS;421
13.3.7;VII. SURPOPULATIONS HOMOGENEOUS IN SENSITIVITY TO DIABETOGENIC
AGENTS;425
13.3.8;VIII. CONCLUSION;428
13.3.9;ACKNOWLEDGMENTS;428
13.3.10;REFERENCES;428
14;PART VI: BIOLUMINESCENCE;430
14.1;Chapter 22. Approaches to the Measurement of ChemilumÌnescence or Bioluminescence
in a Single Cell;432
14.1.1;I. INTRODUCTION;432
14.1.2;II. MATERIALS AND METHODS;433
14.1.3;III. RESULTS AND DISCUSSION;436
14.1.4;REFERENCES;440
14.2;Chapter 23. The Measurement of Light Emitted by
Living Cells;442
14.2.1;I . INTRODUCTION;442
14.2.2;II. ELECTRONICALLY EXCITED
STATES OF MOLECULES;445
14.2.3;III. METHODS FOR ABSOLUTE CALIBRATION AND MEASUREMENTS IN
BIOLUMINESCENCE;448
14.2.4;IV. METHODS FOR DETECTION OF SINGLET OXYGEN IN BIOLOGICAL REACTIONS BY USE OF CHEMILUMINESCENT
PROBES;452
14.2.5;V. THE ORIGIN OF
BIOLUMINESCENCE;456
14.2.6;VI. BIOLUMINESCENT SYSTEMS;457
14.2.7;VII. COLORS OF FIREFLY
BIOLUMINESCENCE;459
14.2.8;VIII. EXPERIMENTAL EVIDENCE FOR THE OPTIMIZATION MODEL OF FIREFLY
FLUORESCENCE;462
14.2.9;IX. APPLICATIONS OF FIREFLY BIOLUMINESCENCE TO ENVIRONMENTAL
PHOTOBIOLOGY;466
14.2.10;X. EVOLUTION OF BIOLUMINESCENCE
IN BACTERIA;466
14.2.11;XI. EMISSION SPECTRUM OF THE MICROSOMAL CHEMILUMINESCENCE OF A PROXIMATE CARCINOGEN, 7,8,-DIOL-BENZO[a]PYRENE;469
14.2.12;XII. CONCLUSIONS;471
14.2.13;REFERENCES;472
15;Index;476


Contributors
Numbers in parentheses indicate the pages on which the authors’ contributions begin. CLAUDINE AMIRAND-PERCHARD(229),     Institut Curie and Université Paris VI, Laboratoire de Physique et Chimie Biomoléculaire, C.N.R.S. U.A. 198 11, 75231, Paris Cedex 05, France DONNA ARNDT-JOVIN(99),     Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, D-3400 Goettingen 1, Federal Republic of Germany GARY R. BRIGHT(297),     Department of Biological Sciences and Center for Fluorescence Research in Biomedical Sciences, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 ROBERT CALLENDER(185),     Department of Physics, The City College, The City University of New York, New York, New York 10031 M.B. CANNELL(347),     Department of Pharmacology, University of Miami School of Medicine, Miami, Florida 33136 L.U. CASSIMERIS(315),     Coker Hall CB3280, Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280 MARTINE CATTARELLI(329),     Physiologie Neuro-Sensorielle, Université Claude Bernard, 69622 Villeurbanne, France BRITTON CHANCE(53),     Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 THOMAS M. CHUSED(377),     Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892 LAWRENCE B. COHEN(329),     Department of Physiology, Yale University School of Medicine, New Haven, Connecticut 06510 ROBBIN DEBIASIO(297),     Department of Biological Sciences and Center for Fluorescence Research in Biomedical Sciences, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 GREGORY W. FISHER(297),     Department of Biological Sciences and Center for Fluorescence Research in Biomedical Sciences, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 JOSEPH G. HIRSCHBERG(87, 199),     Department of Physics, University of Miami, Coral Gables, Florida 33124 THOMAS M. JOVIN(99),     Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, D-3400 Goettingen 1, Federal Republic of Germany FREDERICK H. KASTEN(3),     Department of Anatomy, Louisiana State University Medical Center, New Orleans, Louisiana 70119 CAHIDE KOHEN(87, 199),     Department of Biology, University of Miami, Coral Gables, Florida 33124 ELLI KOHEN(87, 199),     Department of Biology, University of Miami, Coral Gables, Florida 33124 JOSEPH R. LAKOWICZ(163),     University of Maryland School of Medicine, Department of Biological Chemistry, Baltimore, Maryland 21201 LESLIE M. LOEW(329),     Departments of Physiology and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06032 JILL A. LONDON(329),     Departments of Physiology and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06032 KATE LUBY-PHELPS(297),     Department of Biological Sciences and Center for Fluorescence Research in Biomedical Sciences, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 P. MEDA(281),     Institute of Histology and Embryology, University of Geneva Medical School, Geneva, Switzerland ROBERT F. MURPHY(363),     Department of Biological Sciences and Center for Fluorescence Research in Biomedical Sciences, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 JACK NESTORA(199),     Nestor Engineering Associates, Inc., Miami, Florida 33132 HARRY S. ORBACH(329),     Division of Biology, California Institute of Technology, Pasadena, California 91125 DAVID PEDEN(407),     Departments of Pharmacology-Toxicology and Pediatrics, West Virginia University Medical Center, Morgantown, West Virginia 26506 D. PIPELEERS(391),     Department of Metabolism and Endocrinology, Vrije Universiteit Brussel, Laarbeeklaam 103, B-1090 Brussels, Belgium J.S. PLOEM(119),     Department of Cytochemistry and Cytometry, Sylvius Laboratories, University of Leiden, 2333 Al Leiden, The Netherlands E.D. SALMON(315),     Coker Hall CB3280, Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280 J.M. SALMON(269),     Group of Quantitative Microfluorometry, Laboratory of Physical Chemistry, University of Perpignan, 66025 Perpignan, France RENE SANTUS(199),     Museum National d’Histoire Naturelle, Laboratoire de Physico-Chimie de l’Adaptation Biologique, CNRS-UA 481, 43 Rue Cuvier, 75231 Paris, Cedex, France D.O. SCHACHTSCHABEL(199),     Institut für Physiologische Chemie der Medizinische Fakultät der Philipps Universität, 3550 Marburg, German Federal Republic HOWARD H. SELIGER(417),     Department of Biology, John Hopkins University, Baltimore, Maryland 21218 E.H.K. STELZER(131),     European Molecular Biology Laboratory (EMBL), 6900 Heidelberg, Federal Republic of Germany D. LANSING TAYLOR(297),     Department of Biological Sciences and Center for Fluorescence Research in Biomedical Sciences, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 M. VAN DE WINKEL(391),     Department of Metabolism and Endocrinology, Vrije Universiteit Brussel, Laarbeeklaam 103, B-1090 Brussels, Belgium CHRIS VAN DYKE(407),     Departments of Pharmacology-Toxicology and Pediatrics, West Virginia University Medical Center, Morgantown, West Virginia 26506 KNOX VAN DYKE(407),     Departments of Pharmacology-Toxicology and Pediatrics, West Virginia University Medical Center, Morgantown, West Virginia 26506 P. VIALLET(269),     Group of Quantitative Microfluorometry, Laboratory of Physical Chemistry, University of Perpignan, 66025 Perpignan, France PAUL VIGNY(229),     Institut Curie and Université Paris VI, Laboratoire de Physique et Chimie Biomoléculaire, C.N.R.S. U.A. 198 11, 75231, Paris Cedex 05, France J. VIGO(269),     Group of Quantitative Microfluorometry, Laboratory of Physical Chemistry, University of Perpignan, 66025 Perpignan, France LEI-LEI WANG(297),     Department of Biological Sciences and Center for Fluorescence Research in Biomedical Sciences, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 BENNIE R. WARE(145),     Department of Chemistry, Syracuse University, Syracuse, New York 13244-1200 GERGORIO WEBER(71),     Department of Biochemistry, School of Chemical Science, University of Illinois, Urbana, Illinois 61801 R.W....


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.